Binder-free all-carbon composite supercapacitors

Sabreen Jarrar, Shahzad Hussain, Atta Ul Haq, Gourav Bhattacharya, Iyad Saadeddin, Llorenc Servera, J M Ruiz, Alaa Janem, Allan Daraghmeh

Research output: Contribution to journalArticlepeer-review

21 Downloads (Pure)

Abstract

Carbon-based electrode materials have widely been used in supercapacitors. Unfortunately, the fabrication of the supercapacitors includes a polymeric binding material that leads to an undesirable addition of weight along with an increased charge transfer resistance. Herein, binder-free and lightweight electrodes were fabricated using powder processing of carbon nanofibers (CNFs) and graphene nanoplatelets (GNPs) resulting in a hybrid all-carbon composite material. The structural, morphological, and electrochemical properties of the composite electrodes were studied at different concentrations of GNPs. The specific capacitance (Cs) of the CNFs/GNPs composite was improved by increasing the concentration of GNPs. A maximum Cs of around 120 F g−1 was achieved at 90 wt% GNPs which is around 5-fold higher in value than the pristine CNFs in 1 M potassium hydroxides (KOH), which then further increased to 189 F g−1 in 6 M KOH electrolyte. The energy density of around 20 Wh kg−1 with the corresponding power density of 340 W kg−1 was achieved in the supercapacitor containing 90 wt% GNPs. The enhanced electrochemical performance of the composite is related to the presence of a synergistic effect and the CNFs establishing conductive/percolating networks. Such binder-free all-carbon electrodes can be a potential candidate for next-generation energy applications.
Original languageEnglish
Article number305708
JournalNanotechnology
Volume35
Issue number30
DOIs
Publication statusPublished online - 23 Apr 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s). Published by IOP Publishing Ltd.

Keywords

  • Graphene nanoplatelets
  • Carbon nanofibers
  • Binder-free
  • Nanocomposite
  • Supercapacitor
  • Energy storage

Fingerprint

Dive into the research topics of 'Binder-free all-carbon composite supercapacitors'. Together they form a unique fingerprint.

Cite this