Abstract
This paper presents a practical classification system for recognising diseased wheat leaves and consists of a number of components. Pre-processing is performed to adjust the orientation of the primary leaf in the image using a Fourier Transform. A Wavelet Transform is then applied to partially remove low frequency information or background in the image. Subsequently, the dis- eased regions of the primary leaf are segmented out as blobs using Otsu’s thresholding. The disease blobs are normalised and then radially partitioned into sub-regions (using a Radial Pyramid) representing radial development of many diseases. Finally, global features are computed for different pyramid layers and combined to create a feature descriptor for training a linear SVM classifier. The system is evaluated by classifying three types of wheat leaf disease: non- diseased, Yellow Rust and Septoria. The classification accuracies are slightly over 95% and 79% for images captured under controlled and uncontrolled con- ditions, respectively.
Original language | English |
---|---|
Title of host publication | Unknown Host Publication |
Publisher | Springer |
Pages | 456-464 |
Volume | 9164 |
DOIs | |
Publication status | Published (in print/issue) - 4 Jul 2015 |
Keywords
- Wheat disease recognition
- radial pyramid
- rotation using Fourier