TY - CHAP
T1 - Auto-generation of Smart Contracts from a Domain-Specific XML-Based Language
AU - Dwivedi, Vimal
AU - Norta, Alex
PY - 2022/2/28
Y1 - 2022/2/28
N2 - Smart contracts are a means of facilitating, verifying and enforcing digital agreements. Blockchain technology, which includes an inherent consensus mechanism and programming languages, enables the concept of smart contracts. However, smart contracts written in an existing language, such as Solidity, Vyper, and others, are difficult for domain stakeholders and programmers to understand in order to develop code efficiently and without error, owing to a conceptual gap between the contractual provisions and the respective code. Our study addresses the problem by creating smart legal contract markup language (SLCML), an XML-based smart-contract language with pattern and transformation rules that automatically convert XML code to the Solidity language. In particular, we develop an XML schema (SLCML schema) that is used to instantiate any type of business contract understandable to IT and non-IT practitioners and is processed by computers. To reduce the effort and risk associated with smart contract development, we advocate a pattern for converting SLCML contracts to Solidity smart contracts, a smart contractual oriented computer language. We exemplify and assess our SLCML and transformation approach by defining a dairy supply chain contract based on real-world data.
AB - Smart contracts are a means of facilitating, verifying and enforcing digital agreements. Blockchain technology, which includes an inherent consensus mechanism and programming languages, enables the concept of smart contracts. However, smart contracts written in an existing language, such as Solidity, Vyper, and others, are difficult for domain stakeholders and programmers to understand in order to develop code efficiently and without error, owing to a conceptual gap between the contractual provisions and the respective code. Our study addresses the problem by creating smart legal contract markup language (SLCML), an XML-based smart-contract language with pattern and transformation rules that automatically convert XML code to the Solidity language. In particular, we develop an XML schema (SLCML schema) that is used to instantiate any type of business contract understandable to IT and non-IT practitioners and is processed by computers. To reduce the effort and risk associated with smart contract development, we advocate a pattern for converting SLCML contracts to Solidity smart contracts, a smart contractual oriented computer language. We exemplify and assess our SLCML and transformation approach by defining a dairy supply chain contract based on real-world data.
UR - https://doi.org/10.1007/978-981-16-6624-7_54
U2 - 10.1007/978-981-16-6624-7_54
DO - 10.1007/978-981-16-6624-7_54
M3 - Chapter
SN - 978-981-16-6623-0
T3 - Smart Innovation, Systems and Technologies
SP - 549
EP - 564
BT - Intelligent Data Engineering and Analytics
ER -