Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity

G Dixon, J Nolan, Neville McClenaghan, Peter Flatt, P Newsholme

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

Insulin-resistant states such as obesity can result in an increase in the function and mass of pancreatic beta-cells, so that insulin secretion is up-regulated and Type II diabetes does not develop. However, expansion of beta-cell mass is not indefinite and may well decrease with time. Changes in circulating concentrations of nutritional factors, such as fatty acids and/or glucose, may lead to a reduction in beta-cell mass in vivo. Few previous studies have attempted to explore the interplay between glucose, amino acids and fatty acids with respect to beta-cell mass and functional integrity. In the present study, we demonstrate that culture of clonal BRIN-BID II cells for 24 h with the polyunsaturated fatty acid arachidonic acid (AA) increased beta-cell proliferation and enhanced alanine-stimulated insulin secretion. These effects of AA were associated with significant decreases in the cellular consumption Of D-glucose and L-alanine as well as decreased rates of production of nitric oxide and ammonia. Conversely 24 h exposure to the saturated fatty acid palmitic acid (PA) was found to decrease beta-cell viability (by increasing apoptosis), increase the intracellular concentration of triacylglycerol (triglyceride), while inhibiting alanine-stimulated insulin secretion. These effects of PA were associated with significant increases in D-glucose and L-glutamine consumption as well as nitric oxide and ammonia production. However, L-alanine consumption was decreased in the presence of PA. The effects of AA, but not PA, were additionally dependent on glucose concentration. These studies indicate that AA may have a critical role in maintaining the appropriate mass and function of islet beta-cells by influencing rates of cell proliferation and insulin secretion. This regulatory effect may be compromised by high circulating levels of glucose and/or PA, both of which are elevated in Type II diabetes and may impact upon dysfunctional and apoptotic intracellular events in the beta-cell.
LanguageEnglish
Pages191-199
JournalClinical Science
Volume106
Issue number2
DOIs
Publication statusPublished - Feb 2004

Fingerprint

Palmitic Acid
Insulin-Secreting Cells
Arachidonic Acid
Insulin
Glucose
Alanine
Growth
Fatty Acids
Ammonia
Type 2 Diabetes Mellitus
Nitric Oxide
Triglycerides
Cell Proliferation
Glutamine
Unsaturated Fatty Acids
Islets of Langerhans
Cell Survival
Obesity
Apoptosis
Amino Acids

Cite this

@article{537f7ffec783461aa860ba7cfb2bf482,
title = "Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity",
abstract = "Insulin-resistant states such as obesity can result in an increase in the function and mass of pancreatic beta-cells, so that insulin secretion is up-regulated and Type II diabetes does not develop. However, expansion of beta-cell mass is not indefinite and may well decrease with time. Changes in circulating concentrations of nutritional factors, such as fatty acids and/or glucose, may lead to a reduction in beta-cell mass in vivo. Few previous studies have attempted to explore the interplay between glucose, amino acids and fatty acids with respect to beta-cell mass and functional integrity. In the present study, we demonstrate that culture of clonal BRIN-BID II cells for 24 h with the polyunsaturated fatty acid arachidonic acid (AA) increased beta-cell proliferation and enhanced alanine-stimulated insulin secretion. These effects of AA were associated with significant decreases in the cellular consumption Of D-glucose and L-alanine as well as decreased rates of production of nitric oxide and ammonia. Conversely 24 h exposure to the saturated fatty acid palmitic acid (PA) was found to decrease beta-cell viability (by increasing apoptosis), increase the intracellular concentration of triacylglycerol (triglyceride), while inhibiting alanine-stimulated insulin secretion. These effects of PA were associated with significant increases in D-glucose and L-glutamine consumption as well as nitric oxide and ammonia production. However, L-alanine consumption was decreased in the presence of PA. The effects of AA, but not PA, were additionally dependent on glucose concentration. These studies indicate that AA may have a critical role in maintaining the appropriate mass and function of islet beta-cells by influencing rates of cell proliferation and insulin secretion. This regulatory effect may be compromised by high circulating levels of glucose and/or PA, both of which are elevated in Type II diabetes and may impact upon dysfunctional and apoptotic intracellular events in the beta-cell.",
author = "G Dixon and J Nolan and Neville McClenaghan and Peter Flatt and P Newsholme",
year = "2004",
month = "2",
doi = "10.1042/CS20030261",
language = "English",
volume = "106",
pages = "191--199",
journal = "Clinical Science",
issn = "0143-5221",
number = "2",

}

Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity. / Dixon, G; Nolan, J; McClenaghan, Neville; Flatt, Peter; Newsholme, P.

In: Clinical Science, Vol. 106, No. 2, 02.2004, p. 191-199.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity

AU - Dixon, G

AU - Nolan, J

AU - McClenaghan, Neville

AU - Flatt, Peter

AU - Newsholme, P

PY - 2004/2

Y1 - 2004/2

N2 - Insulin-resistant states such as obesity can result in an increase in the function and mass of pancreatic beta-cells, so that insulin secretion is up-regulated and Type II diabetes does not develop. However, expansion of beta-cell mass is not indefinite and may well decrease with time. Changes in circulating concentrations of nutritional factors, such as fatty acids and/or glucose, may lead to a reduction in beta-cell mass in vivo. Few previous studies have attempted to explore the interplay between glucose, amino acids and fatty acids with respect to beta-cell mass and functional integrity. In the present study, we demonstrate that culture of clonal BRIN-BID II cells for 24 h with the polyunsaturated fatty acid arachidonic acid (AA) increased beta-cell proliferation and enhanced alanine-stimulated insulin secretion. These effects of AA were associated with significant decreases in the cellular consumption Of D-glucose and L-alanine as well as decreased rates of production of nitric oxide and ammonia. Conversely 24 h exposure to the saturated fatty acid palmitic acid (PA) was found to decrease beta-cell viability (by increasing apoptosis), increase the intracellular concentration of triacylglycerol (triglyceride), while inhibiting alanine-stimulated insulin secretion. These effects of PA were associated with significant increases in D-glucose and L-glutamine consumption as well as nitric oxide and ammonia production. However, L-alanine consumption was decreased in the presence of PA. The effects of AA, but not PA, were additionally dependent on glucose concentration. These studies indicate that AA may have a critical role in maintaining the appropriate mass and function of islet beta-cells by influencing rates of cell proliferation and insulin secretion. This regulatory effect may be compromised by high circulating levels of glucose and/or PA, both of which are elevated in Type II diabetes and may impact upon dysfunctional and apoptotic intracellular events in the beta-cell.

AB - Insulin-resistant states such as obesity can result in an increase in the function and mass of pancreatic beta-cells, so that insulin secretion is up-regulated and Type II diabetes does not develop. However, expansion of beta-cell mass is not indefinite and may well decrease with time. Changes in circulating concentrations of nutritional factors, such as fatty acids and/or glucose, may lead to a reduction in beta-cell mass in vivo. Few previous studies have attempted to explore the interplay between glucose, amino acids and fatty acids with respect to beta-cell mass and functional integrity. In the present study, we demonstrate that culture of clonal BRIN-BID II cells for 24 h with the polyunsaturated fatty acid arachidonic acid (AA) increased beta-cell proliferation and enhanced alanine-stimulated insulin secretion. These effects of AA were associated with significant decreases in the cellular consumption Of D-glucose and L-alanine as well as decreased rates of production of nitric oxide and ammonia. Conversely 24 h exposure to the saturated fatty acid palmitic acid (PA) was found to decrease beta-cell viability (by increasing apoptosis), increase the intracellular concentration of triacylglycerol (triglyceride), while inhibiting alanine-stimulated insulin secretion. These effects of PA were associated with significant increases in D-glucose and L-glutamine consumption as well as nitric oxide and ammonia production. However, L-alanine consumption was decreased in the presence of PA. The effects of AA, but not PA, were additionally dependent on glucose concentration. These studies indicate that AA may have a critical role in maintaining the appropriate mass and function of islet beta-cells by influencing rates of cell proliferation and insulin secretion. This regulatory effect may be compromised by high circulating levels of glucose and/or PA, both of which are elevated in Type II diabetes and may impact upon dysfunctional and apoptotic intracellular events in the beta-cell.

U2 - 10.1042/CS20030261

DO - 10.1042/CS20030261

M3 - Article

VL - 106

SP - 191

EP - 199

JO - Clinical Science

T2 - Clinical Science

JF - Clinical Science

SN - 0143-5221

IS - 2

ER -