TY - JOUR
T1 - Antimicrobial peptides from ranid frogs
T2 - Taxonomic and phylogenetic markers and a potential source of new therapeutic agents
AU - Conlon, J. Michael
AU - Kolodziejek, Jolanta
AU - Nowotny, Norbert
PY - 2004/1/14
Y1 - 2004/1/14
N2 - Granular glands in the skins of frogs of the genus Rana, a widely distributed group with over 250 species, synthesize and secrete a remarkably diverse array of peptides with antimicrobial activity that are believed to have arisen as a result of multiple gene duplication events. Almost without exception, these components are hydrophobic, cationic and form an amphipathic α-helix in a membrane-mimetic solvent. The peptides can be grouped into families on the basis of structural similarity. To date, brevinin-1, esculentin-1, esculentin-2, and temporin peptides have been found in ranid frogs of both Eurasian and North American origin; ranalexin, ranatuerin-1, ranatuerin-2 and palustrin peptides only in N. American frogs; and brevinin-2, tigerinin, japonicin, nigrocin and melittin-related peptides only in Eurasian frogs. It is generally assumed that this structurally diversity serves to protect the organism against a wide range of pathogens but convincing evidence in support of this hypothesis is still required. The possibility that "antimicrobial peptides" fulfill additional or alternative biological functions should not be rejected. The molecular heterogeneity of the peptide families, particularly brevinin-1, brevinin-2 and ranatuerin-2, may be exploited for the purposes of unequivocal identification of specimens and for an understanding of phylogenetic interrelationships between species. The broad-spectrum antibacterial and antifungal activities of certain peptides, for example esculentin-1, ranalexin-1 and ranatuerin, together with their relatively low hemolytic activity, make them candidates for development into therapeutically useful anti-infective agents.
AB - Granular glands in the skins of frogs of the genus Rana, a widely distributed group with over 250 species, synthesize and secrete a remarkably diverse array of peptides with antimicrobial activity that are believed to have arisen as a result of multiple gene duplication events. Almost without exception, these components are hydrophobic, cationic and form an amphipathic α-helix in a membrane-mimetic solvent. The peptides can be grouped into families on the basis of structural similarity. To date, brevinin-1, esculentin-1, esculentin-2, and temporin peptides have been found in ranid frogs of both Eurasian and North American origin; ranalexin, ranatuerin-1, ranatuerin-2 and palustrin peptides only in N. American frogs; and brevinin-2, tigerinin, japonicin, nigrocin and melittin-related peptides only in Eurasian frogs. It is generally assumed that this structurally diversity serves to protect the organism against a wide range of pathogens but convincing evidence in support of this hypothesis is still required. The possibility that "antimicrobial peptides" fulfill additional or alternative biological functions should not be rejected. The molecular heterogeneity of the peptide families, particularly brevinin-1, brevinin-2 and ranatuerin-2, may be exploited for the purposes of unequivocal identification of specimens and for an understanding of phylogenetic interrelationships between species. The broad-spectrum antibacterial and antifungal activities of certain peptides, for example esculentin-1, ranalexin-1 and ranatuerin, together with their relatively low hemolytic activity, make them candidates for development into therapeutically useful anti-infective agents.
KW - Antimicrobial peptide
KW - Drug development
KW - Phylogeny
KW - Rana
KW - Taxonomy
UR - http://www.scopus.com/inward/record.url?scp=1242306544&partnerID=8YFLogxK
U2 - 10.1016/j.bbapap.2003.09.004
DO - 10.1016/j.bbapap.2003.09.004
M3 - Review article
C2 - 14726199
AN - SCOPUS:1242306544
SN - 1570-9639
VL - 1696
SP - 1
EP - 14
JO - Biochimica et Biophysica Acta - Proteins and Proteomics
JF - Biochimica et Biophysica Acta - Proteins and Proteomics
IS - 1
ER -