Antimicrobial and antibiofilm potential of biosurfactants as novel combination therapy against bacterium that cause skin infections

Colleen Dempster, Roger Marchant (Editor), Ibrahim Banat (Editor)

Research output: Contribution to conferencePoster

Abstract

Biosurfactants (BS) are amphiphilic molecules produced as a secondary metabolite by various bacteria and yeast species and are secreted extracellularly. BS have shown to work in synergy with antibiotics and also demonstrate strong antimicrobial and anti-adhesive characteristics. This coupled with their low toxicity makes them suitable candidates as combination therapies to combat skin infections. In this study, the aim was to investigate the in-vitro antimicrobial and anti-biofilm properties of mannosylerythritol lipids (MELs) produced by Moesziomyces aphidis against Staphylococcus aureus DSM-20231, Streptococcus pyogenes ATCC-19615, Staphylococcus epidermidis DSM – 28319, Pseudomonas aeruginosa DSM-3227, Escherichia coli ATCC – 25 922 and Propionibacerium acnes DSM- 1897. MELs are most predominantly used in skin creams, thus, a rationale was developed to investigate antibiotics used to treat bacterial skin infections, namely, Polymyxin B Sulphate, Neomycin, Mupirocin and Bacitracin. Minimum inhibitory concentration (MIC) values where determined for each antibiotic and BS per bacterium using the broth dilution technique based on CLSI guidelines. BS where extracted by solvent extraction and characterised using Mass Spectrometry – High Performance Liquid Chromatography, standards were quality assured using MALDI-TOF. Flow cytometry determined percentage dead versus alive for each antibiotic, BS and combination of antibiotic and BS. Scanning Electron Microscopy determined the effect of the BS on the bacterial cell walls. This study proves that BS work synergistically with antibiotics to increase the MIC of the antibiotics resulting in a substantial decrease in antibiotic use and at lower concentration. The use of BS combination therapy has the potential to reduce resistant rates and also lengthen the time taken for resistance to develop.

Conference

ConferenceMicrobiology Society Annual Conference 2019
CountryUnited Kingdom
CityBelfast
Period8/04/1911/04/19
Internet address

Fingerprint

Anti-Bacterial Agents
Bacteria
Skin
Infection
Microbial Sensitivity Tests
Therapeutics
Skin Cream
Mupirocin
Bacitracin
Indicator Dilution Techniques
Polymyxin B
Neomycin
Staphylococcus epidermidis
Streptococcus pyogenes
Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry
Acne Vulgaris
Biofilms
Bacterial Infections
Adhesives
Electron Scanning Microscopy

Cite this

@conference{44e004b71a2343c79bc98d67ed347d04,
title = "Antimicrobial and antibiofilm potential of biosurfactants as novel combination therapy against bacterium that cause skin infections",
abstract = "Biosurfactants (BS) are amphiphilic molecules produced as a secondary metabolite by various bacteria and yeast species and are secreted extracellularly. BS have shown to work in synergy with antibiotics and also demonstrate strong antimicrobial and anti-adhesive characteristics. This coupled with their low toxicity makes them suitable candidates as combination therapies to combat skin infections. In this study, the aim was to investigate the in-vitro antimicrobial and anti-biofilm properties of mannosylerythritol lipids (MELs) produced by Moesziomyces aphidis against Staphylococcus aureus DSM-20231, Streptococcus pyogenes ATCC-19615, Staphylococcus epidermidis DSM – 28319, Pseudomonas aeruginosa DSM-3227, Escherichia coli ATCC – 25 922 and Propionibacerium acnes DSM- 1897. MELs are most predominantly used in skin creams, thus, a rationale was developed to investigate antibiotics used to treat bacterial skin infections, namely, Polymyxin B Sulphate, Neomycin, Mupirocin and Bacitracin. Minimum inhibitory concentration (MIC) values where determined for each antibiotic and BS per bacterium using the broth dilution technique based on CLSI guidelines. BS where extracted by solvent extraction and characterised using Mass Spectrometry – High Performance Liquid Chromatography, standards were quality assured using MALDI-TOF. Flow cytometry determined percentage dead versus alive for each antibiotic, BS and combination of antibiotic and BS. Scanning Electron Microscopy determined the effect of the BS on the bacterial cell walls. This study proves that BS work synergistically with antibiotics to increase the MIC of the antibiotics resulting in a substantial decrease in antibiotic use and at lower concentration. The use of BS combination therapy has the potential to reduce resistant rates and also lengthen the time taken for resistance to develop.",
author = "Colleen Dempster and Roger Marchant and Ibrahim Banat",
year = "2019",
month = "4",
day = "8",
doi = "10.1099/acmi.ac2019.po0566",
language = "English",
note = "Microbiology Society Annual Conference 2019 ; Conference date: 08-04-2019 Through 11-04-2019",
url = "https://microbiologysociety.org/event/annual-conference/annual-conference.html",

}

Antimicrobial and antibiofilm potential of biosurfactants as novel combination therapy against bacterium that cause skin infections. / Dempster, Colleen; Marchant, Roger (Editor); Banat, Ibrahim (Editor).

2019. Poster session presented at Microbiology Society Annual Conference 2019, Belfast, United Kingdom.

Research output: Contribution to conferencePoster

TY - CONF

T1 - Antimicrobial and antibiofilm potential of biosurfactants as novel combination therapy against bacterium that cause skin infections

AU - Dempster, Colleen

A2 - Marchant, Roger

A2 - Banat, Ibrahim

PY - 2019/4/8

Y1 - 2019/4/8

N2 - Biosurfactants (BS) are amphiphilic molecules produced as a secondary metabolite by various bacteria and yeast species and are secreted extracellularly. BS have shown to work in synergy with antibiotics and also demonstrate strong antimicrobial and anti-adhesive characteristics. This coupled with their low toxicity makes them suitable candidates as combination therapies to combat skin infections. In this study, the aim was to investigate the in-vitro antimicrobial and anti-biofilm properties of mannosylerythritol lipids (MELs) produced by Moesziomyces aphidis against Staphylococcus aureus DSM-20231, Streptococcus pyogenes ATCC-19615, Staphylococcus epidermidis DSM – 28319, Pseudomonas aeruginosa DSM-3227, Escherichia coli ATCC – 25 922 and Propionibacerium acnes DSM- 1897. MELs are most predominantly used in skin creams, thus, a rationale was developed to investigate antibiotics used to treat bacterial skin infections, namely, Polymyxin B Sulphate, Neomycin, Mupirocin and Bacitracin. Minimum inhibitory concentration (MIC) values where determined for each antibiotic and BS per bacterium using the broth dilution technique based on CLSI guidelines. BS where extracted by solvent extraction and characterised using Mass Spectrometry – High Performance Liquid Chromatography, standards were quality assured using MALDI-TOF. Flow cytometry determined percentage dead versus alive for each antibiotic, BS and combination of antibiotic and BS. Scanning Electron Microscopy determined the effect of the BS on the bacterial cell walls. This study proves that BS work synergistically with antibiotics to increase the MIC of the antibiotics resulting in a substantial decrease in antibiotic use and at lower concentration. The use of BS combination therapy has the potential to reduce resistant rates and also lengthen the time taken for resistance to develop.

AB - Biosurfactants (BS) are amphiphilic molecules produced as a secondary metabolite by various bacteria and yeast species and are secreted extracellularly. BS have shown to work in synergy with antibiotics and also demonstrate strong antimicrobial and anti-adhesive characteristics. This coupled with their low toxicity makes them suitable candidates as combination therapies to combat skin infections. In this study, the aim was to investigate the in-vitro antimicrobial and anti-biofilm properties of mannosylerythritol lipids (MELs) produced by Moesziomyces aphidis against Staphylococcus aureus DSM-20231, Streptococcus pyogenes ATCC-19615, Staphylococcus epidermidis DSM – 28319, Pseudomonas aeruginosa DSM-3227, Escherichia coli ATCC – 25 922 and Propionibacerium acnes DSM- 1897. MELs are most predominantly used in skin creams, thus, a rationale was developed to investigate antibiotics used to treat bacterial skin infections, namely, Polymyxin B Sulphate, Neomycin, Mupirocin and Bacitracin. Minimum inhibitory concentration (MIC) values where determined for each antibiotic and BS per bacterium using the broth dilution technique based on CLSI guidelines. BS where extracted by solvent extraction and characterised using Mass Spectrometry – High Performance Liquid Chromatography, standards were quality assured using MALDI-TOF. Flow cytometry determined percentage dead versus alive for each antibiotic, BS and combination of antibiotic and BS. Scanning Electron Microscopy determined the effect of the BS on the bacterial cell walls. This study proves that BS work synergistically with antibiotics to increase the MIC of the antibiotics resulting in a substantial decrease in antibiotic use and at lower concentration. The use of BS combination therapy has the potential to reduce resistant rates and also lengthen the time taken for resistance to develop.

U2 - 10.1099/acmi.ac2019.po0566

DO - 10.1099/acmi.ac2019.po0566

M3 - Poster

ER -