Anti-diabetic actions of esculentin-2CHa(1–30) and its stable analogues in a diet-induced model of obesity-diabetes

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Actions of esculentin-2CHa(1-30) (GFSSIFRGVAKFASKGLGKDLAKLGVDLVA) and its analogues, ([D-Arg7, D-Lys15, D-Lys23]-esculentin-2CHa(1-30) and [Lys15-octanoate]-esculentin-2CHa(1-30), were evaluated in high-fat fed NIH Swiss mice with impaired glucose tolerance and insulin resistance. Twice-daily i.p. administration of the esculentin-2CHa(1-30) peptides (75 nmol/kg body weight) or exendin-4 (25 nmol/kg) for 28 days reduced body weight, without altering cumulative energy intake. All peptides reduced blood glucose levels by 6-12 mmol/l concomitant with lower plasma insulin levels, with significance evident from day 6. All peptides improved glucose tolerance, insulin sensitivity, blood glucose profile over 24 h and decreased HbA1c to a similar extent as exendin-4. The peptides also reduced high fat diet-induced increases in plasma GLP-1 and glucagon. None of the peptides altered bone mineral density/content or lean mass but decreased fat mass. Islets isolated from peptide-treated mice exhibited improved glucose-, alanine- and GLP-1-stimulated insulin secretion. Islet morphometric analyses revealed that exendin-4 and the esculentin-2CHa(1-30) peptides significantly reduced islet, beta and alpha cell areas compared to high-fat controls. Esculentin-2CHa(1-30) peptides markedly reduced high fat diet-induced increase in beta cell proliferation and apoptosis. Peptide treatments had beneficial effects on expression of islet genes (Ins1, Slc2a2, Pdx1) and skeletal muscle genes involved in insulin action (Slc2a4, Pdk1, Irs1, Akt1). High-fat diet significantly increased LDL cholesterol which was reduced by the acylated esculentin-2CHa(1-30) analogue. Peptide treatments did not alter circulating concentrations of amylase and marker enzymes of liver function, indicating a lack of toxicity. These data indicate that esculentin-2CHa(1-30) and its analogues may be useful for improvement of blood glucose control and weight loss in type 2 diabetes.
LanguageEnglish
Pages1705-1717
JournalAmino Acids
Volume49
Issue number10
Early online date23 Aug 2017
DOIs
Publication statusE-pub ahead of print - 23 Aug 2017

Fingerprint

Obesity
Diet
Peptides
High Fat Diet
Blood Glucose
Glucagon-Like Peptide 1
Fats
Insulin
Bone Density
Insulin Resistance
Body Weight
esculentin steroid
Glucose
Glucose Intolerance
Amylases
Energy Intake
Glucagon
Alanine
LDL Cholesterol
Type 2 Diabetes Mellitus

Keywords

  • Esculentin-2CHa(1–30)
  • Diabetes
  • Glucose tolerance
  • Amphibian peptide
  • Diet-induced obesity

Cite this

@article{55b1e3fec1194d7eaf62e01646be5880,
title = "Anti-diabetic actions of esculentin-2CHa(1–30) and its stable analogues in a diet-induced model of obesity-diabetes",
abstract = "Actions of esculentin-2CHa(1-30) (GFSSIFRGVAKFASKGLGKDLAKLGVDLVA) and its analogues, ([D-Arg7, D-Lys15, D-Lys23]-esculentin-2CHa(1-30) and [Lys15-octanoate]-esculentin-2CHa(1-30), were evaluated in high-fat fed NIH Swiss mice with impaired glucose tolerance and insulin resistance. Twice-daily i.p. administration of the esculentin-2CHa(1-30) peptides (75 nmol/kg body weight) or exendin-4 (25 nmol/kg) for 28 days reduced body weight, without altering cumulative energy intake. All peptides reduced blood glucose levels by 6-12 mmol/l concomitant with lower plasma insulin levels, with significance evident from day 6. All peptides improved glucose tolerance, insulin sensitivity, blood glucose profile over 24 h and decreased HbA1c to a similar extent as exendin-4. The peptides also reduced high fat diet-induced increases in plasma GLP-1 and glucagon. None of the peptides altered bone mineral density/content or lean mass but decreased fat mass. Islets isolated from peptide-treated mice exhibited improved glucose-, alanine- and GLP-1-stimulated insulin secretion. Islet morphometric analyses revealed that exendin-4 and the esculentin-2CHa(1-30) peptides significantly reduced islet, beta and alpha cell areas compared to high-fat controls. Esculentin-2CHa(1-30) peptides markedly reduced high fat diet-induced increase in beta cell proliferation and apoptosis. Peptide treatments had beneficial effects on expression of islet genes (Ins1, Slc2a2, Pdx1) and skeletal muscle genes involved in insulin action (Slc2a4, Pdk1, Irs1, Akt1). High-fat diet significantly increased LDL cholesterol which was reduced by the acylated esculentin-2CHa(1-30) analogue. Peptide treatments did not alter circulating concentrations of amylase and marker enzymes of liver function, indicating a lack of toxicity. These data indicate that esculentin-2CHa(1-30) and its analogues may be useful for improvement of blood glucose control and weight loss in type 2 diabetes.",
keywords = "Esculentin-2CHa(1–30), Diabetes, Glucose tolerance, Amphibian peptide, Diet-induced obesity",
author = "Srividya Vasu and Opeolu Ojo and Charlotte Moffett and JM Conlon and Peter Flatt and Yasser Abdel-Wahab",
year = "2017",
month = "8",
day = "23",
doi = "10.1007/s00726-017-2469-3",
language = "English",
volume = "49",
pages = "1705--1717",
journal = "Amino Acids",
issn = "0939-4451",
number = "10",

}

Anti-diabetic actions of esculentin-2CHa(1–30) and its stable analogues in a diet-induced model of obesity-diabetes. / Vasu, Srividya; Ojo, Opeolu; Moffett, Charlotte; Conlon, JM; Flatt, Peter; Abdel-Wahab, Yasser.

In: Amino Acids, Vol. 49, No. 10, 23.08.2017, p. 1705-1717.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Anti-diabetic actions of esculentin-2CHa(1–30) and its stable analogues in a diet-induced model of obesity-diabetes

AU - Vasu, Srividya

AU - Ojo, Opeolu

AU - Moffett, Charlotte

AU - Conlon, JM

AU - Flatt, Peter

AU - Abdel-Wahab, Yasser

PY - 2017/8/23

Y1 - 2017/8/23

N2 - Actions of esculentin-2CHa(1-30) (GFSSIFRGVAKFASKGLGKDLAKLGVDLVA) and its analogues, ([D-Arg7, D-Lys15, D-Lys23]-esculentin-2CHa(1-30) and [Lys15-octanoate]-esculentin-2CHa(1-30), were evaluated in high-fat fed NIH Swiss mice with impaired glucose tolerance and insulin resistance. Twice-daily i.p. administration of the esculentin-2CHa(1-30) peptides (75 nmol/kg body weight) or exendin-4 (25 nmol/kg) for 28 days reduced body weight, without altering cumulative energy intake. All peptides reduced blood glucose levels by 6-12 mmol/l concomitant with lower plasma insulin levels, with significance evident from day 6. All peptides improved glucose tolerance, insulin sensitivity, blood glucose profile over 24 h and decreased HbA1c to a similar extent as exendin-4. The peptides also reduced high fat diet-induced increases in plasma GLP-1 and glucagon. None of the peptides altered bone mineral density/content or lean mass but decreased fat mass. Islets isolated from peptide-treated mice exhibited improved glucose-, alanine- and GLP-1-stimulated insulin secretion. Islet morphometric analyses revealed that exendin-4 and the esculentin-2CHa(1-30) peptides significantly reduced islet, beta and alpha cell areas compared to high-fat controls. Esculentin-2CHa(1-30) peptides markedly reduced high fat diet-induced increase in beta cell proliferation and apoptosis. Peptide treatments had beneficial effects on expression of islet genes (Ins1, Slc2a2, Pdx1) and skeletal muscle genes involved in insulin action (Slc2a4, Pdk1, Irs1, Akt1). High-fat diet significantly increased LDL cholesterol which was reduced by the acylated esculentin-2CHa(1-30) analogue. Peptide treatments did not alter circulating concentrations of amylase and marker enzymes of liver function, indicating a lack of toxicity. These data indicate that esculentin-2CHa(1-30) and its analogues may be useful for improvement of blood glucose control and weight loss in type 2 diabetes.

AB - Actions of esculentin-2CHa(1-30) (GFSSIFRGVAKFASKGLGKDLAKLGVDLVA) and its analogues, ([D-Arg7, D-Lys15, D-Lys23]-esculentin-2CHa(1-30) and [Lys15-octanoate]-esculentin-2CHa(1-30), were evaluated in high-fat fed NIH Swiss mice with impaired glucose tolerance and insulin resistance. Twice-daily i.p. administration of the esculentin-2CHa(1-30) peptides (75 nmol/kg body weight) or exendin-4 (25 nmol/kg) for 28 days reduced body weight, without altering cumulative energy intake. All peptides reduced blood glucose levels by 6-12 mmol/l concomitant with lower plasma insulin levels, with significance evident from day 6. All peptides improved glucose tolerance, insulin sensitivity, blood glucose profile over 24 h and decreased HbA1c to a similar extent as exendin-4. The peptides also reduced high fat diet-induced increases in plasma GLP-1 and glucagon. None of the peptides altered bone mineral density/content or lean mass but decreased fat mass. Islets isolated from peptide-treated mice exhibited improved glucose-, alanine- and GLP-1-stimulated insulin secretion. Islet morphometric analyses revealed that exendin-4 and the esculentin-2CHa(1-30) peptides significantly reduced islet, beta and alpha cell areas compared to high-fat controls. Esculentin-2CHa(1-30) peptides markedly reduced high fat diet-induced increase in beta cell proliferation and apoptosis. Peptide treatments had beneficial effects on expression of islet genes (Ins1, Slc2a2, Pdx1) and skeletal muscle genes involved in insulin action (Slc2a4, Pdk1, Irs1, Akt1). High-fat diet significantly increased LDL cholesterol which was reduced by the acylated esculentin-2CHa(1-30) analogue. Peptide treatments did not alter circulating concentrations of amylase and marker enzymes of liver function, indicating a lack of toxicity. These data indicate that esculentin-2CHa(1-30) and its analogues may be useful for improvement of blood glucose control and weight loss in type 2 diabetes.

KW - Esculentin-2CHa(1–30)

KW - Diabetes

KW - Glucose tolerance

KW - Amphibian peptide

KW - Diet-induced obesity

U2 - 10.1007/s00726-017-2469-3

DO - 10.1007/s00726-017-2469-3

M3 - Article

VL - 49

SP - 1705

EP - 1717

JO - Amino Acids

T2 - Amino Acids

JF - Amino Acids

SN - 0939-4451

IS - 10

ER -