Abstract
This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections; of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility.
Original language | English |
---|---|
Article number | 119531 |
Number of pages | 21 |
Journal | International Journal of Pharmaceutics |
Volume | 586 |
Early online date | 12 Jun 2020 |
DOIs | |
Publication status | Published (in print/issue) - 30 Aug 2020 |
Bibliographical note
Funding Information:The authors would like to acknowledge NordForsk Nordic University Hub project #85352 (Nordic POP, Patient-Oriented Products) for the funding support enabling the collaboration leading to this review. The authors also want to acknowledge the Academy of Finland (grant number 308329 to J Rautio), Finnish-Norwegian Medical Foundation 201900032, Nordic Centre, and the Ministry of Education and Culture (EDUFI, grant number TM-17-10632) to DM Pardhi for financial support. Finally, the authors would like to express gratitude to Dr. Zhengwei Mao for guidance in writing the review.
Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
Keywords
- Antibiotics
- Antimicrobial
- Antimicrobial peptides
- Conjugates
- Nanomaterial