TY - JOUR
T1 - An Efficient Method for Modeling Kinetic Behavior of Channel Proteins in Cardiomyocytes
AU - Wang, Chong
AU - Beyerlein, Peter
AU - Pospisil, Heike
AU - Krause, Antje
AU - Nugent, Chris D
AU - Dubitzky, W
PY - 2012/1
Y1 - 2012/1
N2 - Characterization of the kinetic and conformational properties of channel proteins is a crucial element in the integrative studyof congenital cardiac diseases. The proteins of the ion channels of cardiomyocytes represent an important family of biologicalcomponents determining the physiology of the heart. Some computational studies aiming to understand the mechanisms of the ionchannels of cardiomyocytes have concentrated on Markovian stochastic approaches. Mathematically, these approaches employChapman-Kolmogorov equations coupled with partial differential equations. As the scale and complexity of such subcellular andcellular models increases, the balance between efficiency and accuracy of algorithms becomes critical. We have developed a novel two-stage splitting algorithm to address efficiency and accuracy issues arising in such modeling and simulation scenarios. Numerical experiments were performed based on the incorporation of our newly developed conformational kinetic model for the rapid delayed rectifier potassium channel into the dynamic models of human ventricular myocytes. Our results show that the new algorithm significantly outperforms commonly adopted adaptive Runge-Kutta methods. Furthermore, our parallel simulations with coupled algorithms for multicellular cardiac tissue demonstrate a high linearity in the speedup of large-scale cardiac simulations.
AB - Characterization of the kinetic and conformational properties of channel proteins is a crucial element in the integrative studyof congenital cardiac diseases. The proteins of the ion channels of cardiomyocytes represent an important family of biologicalcomponents determining the physiology of the heart. Some computational studies aiming to understand the mechanisms of the ionchannels of cardiomyocytes have concentrated on Markovian stochastic approaches. Mathematically, these approaches employChapman-Kolmogorov equations coupled with partial differential equations. As the scale and complexity of such subcellular andcellular models increases, the balance between efficiency and accuracy of algorithms becomes critical. We have developed a novel two-stage splitting algorithm to address efficiency and accuracy issues arising in such modeling and simulation scenarios. Numerical experiments were performed based on the incorporation of our newly developed conformational kinetic model for the rapid delayed rectifier potassium channel into the dynamic models of human ventricular myocytes. Our results show that the new algorithm significantly outperforms commonly adopted adaptive Runge-Kutta methods. Furthermore, our parallel simulations with coupled algorithms for multicellular cardiac tissue demonstrate a high linearity in the speedup of large-scale cardiac simulations.
U2 - 10.1109/TCBB.2011.84
DO - 10.1109/TCBB.2011.84
M3 - Article
SN - 1557-9964
VL - 9
SP - 40
EP - 51
JO - IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,
JF - IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,
IS - 1
ER -