TY - JOUR
T1 - Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties
AU - O'Harte, Finbarr
AU - Parthsarathy, Vadivel
AU - Hogg, Christopher
AU - Flatt, Peter
PY - 2017/12/15
Y1 - 2017/12/15
N2 - The adipokine, apelin has many biological functions but its activity is curtailed by rapid plasma degradation. Fatty acid derived apelin analogues represent a new and exciting avenue for the treatment of obesity-diabetes. This study explores four novel fatty acid modified apelin-13 analogues, namely, (Lys8GluPAL)apelin-13 amide, pGlu(Lys8GluPAL)apelin-13 amide, Lys8GluPAL(Tyr13)apelin-13 and Lys8GluPAL(Val13)apelin-13. Fatty acid modification extended the half-life of native apelin-13 to >24 h in vitro. pGlu(Lys8GluPAL)apelin-13 amide was the most potent insulinotropic analogue in BRIN-BD11 cells and isolated islets with maximal stimulatory effects of up to 2.7-fold (p <.001). (Lys8GluPAL)apelin-13 amide (1.9-fold) and Lys8GluPAL(Tyr13)apelin-13 (1.7-fold) were less effective, whereas Lys8GluPAL(Val13)apelin-13 had an inhibitory effect on insulin secretion. Similarly, pGlu(Lys8GluPAL)apelin-13 amide was most potent in increasing beta-cell intracellular Ca2+ concentrations (1.8-fold, p <.001) and increasing glucose uptake in 3T3-L1 adipocytes (2.3-fold, p <.01). Persistent biological action was observed with both pGlu(Lys8GluPAL)apelin-13 amide and (Lys8GluPAL)apelin-13 amide significantly reducing blood glucose (39–43%, p <.01) and enhancing insulin secretion (43–56%, p <.001) during glucose tolerance tests in diet-induced obese mice. pGlu(Lys8GluPAL)apelin-13 amide and (Lys8GluPAL)apelin-13 amide also inhibited feeding (28–40%, p <.001), whereas Lys8GluPAL(Val13)apelin-13 increased food intake (8%, p <.05) in mice. These data indicate that novel enzymatically stable analogues of apelin-13 may be suitable for future development as therapeutic agents for obesity-diabetes.
AB - The adipokine, apelin has many biological functions but its activity is curtailed by rapid plasma degradation. Fatty acid derived apelin analogues represent a new and exciting avenue for the treatment of obesity-diabetes. This study explores four novel fatty acid modified apelin-13 analogues, namely, (Lys8GluPAL)apelin-13 amide, pGlu(Lys8GluPAL)apelin-13 amide, Lys8GluPAL(Tyr13)apelin-13 and Lys8GluPAL(Val13)apelin-13. Fatty acid modification extended the half-life of native apelin-13 to >24 h in vitro. pGlu(Lys8GluPAL)apelin-13 amide was the most potent insulinotropic analogue in BRIN-BD11 cells and isolated islets with maximal stimulatory effects of up to 2.7-fold (p <.001). (Lys8GluPAL)apelin-13 amide (1.9-fold) and Lys8GluPAL(Tyr13)apelin-13 (1.7-fold) were less effective, whereas Lys8GluPAL(Val13)apelin-13 had an inhibitory effect on insulin secretion. Similarly, pGlu(Lys8GluPAL)apelin-13 amide was most potent in increasing beta-cell intracellular Ca2+ concentrations (1.8-fold, p <.001) and increasing glucose uptake in 3T3-L1 adipocytes (2.3-fold, p <.01). Persistent biological action was observed with both pGlu(Lys8GluPAL)apelin-13 amide and (Lys8GluPAL)apelin-13 amide significantly reducing blood glucose (39–43%, p <.01) and enhancing insulin secretion (43–56%, p <.001) during glucose tolerance tests in diet-induced obese mice. pGlu(Lys8GluPAL)apelin-13 amide and (Lys8GluPAL)apelin-13 amide also inhibited feeding (28–40%, p <.001), whereas Lys8GluPAL(Val13)apelin-13 increased food intake (8%, p <.05) in mice. These data indicate that novel enzymatically stable analogues of apelin-13 may be suitable for future development as therapeutic agents for obesity-diabetes.
KW - Adipokine
KW - Apelin-13
KW - Type 2 diabetes
KW - Obesity
KW - Feeding
KW - Glucose homeostasis insulin release
KW - Glucose uptake
UR - https://pure.ulster.ac.uk/en/publications/acylated-apelin-13-amide-analogues-exhibit-enzyme-resistance-and--2
U2 - 10.1016/j.bcp.2017.10.002
DO - 10.1016/j.bcp.2017.10.002
M3 - Article
C2 - 28987595
VL - 146
SP - 165
EP - 173
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
ER -