ACUTE ANKLE SPRAIN INJURY ALTERS KINEMATIC AND CENTRE OF PRESSURE MEASURES OF POSTURAL CONTROL DURING SINGLE LIMB STANCE

C Doherty, E Delahunt, Chris M Bleakley

    Research output: Contribution to journalArticle

    Abstract

    Background Upright single-limb stance (SLS) is maintained via integration of visual, vestibular and somatosensory afferents. The presence of redundancies between these afferents allows the sensorimotor system to simplify a specific task within a number of strategies. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. No current investigation has supplemented kinetic analysis of eyes-open and eyes-closed SLS tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain (LAS) group to assess the adaptive capacity of the sensorimotor system to injury. Objective To compare centre of pressure (COP) and lower limb postural orientation characteristics of participants with acute LAS to non-injured participants during a SLS task. Design Cross-sectional. Setting University biomechanics laboratory. Participants 66 participants with acute LAS completed a task of eyes-open SLS on their injured and non-injured limbs (task 1). 23 of these participants successfully completed the SLS task with their eyes closed (task 2). A non-injured control group of nineteen participants completed task 1, with 16 completing task 2. Main outcome measures 3D kinematics of the hip, knee and ankle joints as well as associated fractal dimension (FD) of the COP path. Results Between trial analyses of groups revealed significant differences in lower limb kinematics and FD of the COP path for task 2. Post-hoc testing revealed that non-injured control group bilaterally assumed a position of greater hip flexion compared to LAS participants (injured limb=7.41±6.1◦ vs 1.44±4.8◦; non-injured limb=9.59±8.5◦ vs 2.16±5.6◦), with a corollary of greater FD of the COP path (injured limb=1.39±0.16 vs 1.25±0.14; non-injured limb=1.37±0.21 vs 1.23±0.14). Conclusion Acute LAS causes bilateral impairment in postural control strategies
    LanguageEnglish
    JournalBritish Journal of Sports Medicine
    Volume48
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Ankle Injuries
    Biomechanical Phenomena
    Extremities
    Pressure
    Fractals
    Lower Extremity
    Control Groups
    Ankle Joint
    Hip Joint
    Wounds and Injuries
    Knee Joint
    Hip
    Outcome Assessment (Health Care)

    Keywords

    • ankle sprain
    • acute
    • kinematic
    • kinetics

    Cite this

    @article{0176af7e61c24474bfecdd4182c53372,
    title = "ACUTE ANKLE SPRAIN INJURY ALTERS KINEMATIC AND CENTRE OF PRESSURE MEASURES OF POSTURAL CONTROL DURING SINGLE LIMB STANCE",
    abstract = "Background Upright single-limb stance (SLS) is maintained via integration of visual, vestibular and somatosensory afferents. The presence of redundancies between these afferents allows the sensorimotor system to simplify a specific task within a number of strategies. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. No current investigation has supplemented kinetic analysis of eyes-open and eyes-closed SLS tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain (LAS) group to assess the adaptive capacity of the sensorimotor system to injury. Objective To compare centre of pressure (COP) and lower limb postural orientation characteristics of participants with acute LAS to non-injured participants during a SLS task. Design Cross-sectional. Setting University biomechanics laboratory. Participants 66 participants with acute LAS completed a task of eyes-open SLS on their injured and non-injured limbs (task 1). 23 of these participants successfully completed the SLS task with their eyes closed (task 2). A non-injured control group of nineteen participants completed task 1, with 16 completing task 2. Main outcome measures 3D kinematics of the hip, knee and ankle joints as well as associated fractal dimension (FD) of the COP path. Results Between trial analyses of groups revealed significant differences in lower limb kinematics and FD of the COP path for task 2. Post-hoc testing revealed that non-injured control group bilaterally assumed a position of greater hip flexion compared to LAS participants (injured limb=7.41±6.1◦ vs 1.44±4.8◦; non-injured limb=9.59±8.5◦ vs 2.16±5.6◦), with a corollary of greater FD of the COP path (injured limb=1.39±0.16 vs 1.25±0.14; non-injured limb=1.37±0.21 vs 1.23±0.14). Conclusion Acute LAS causes bilateral impairment in postural control strategies",
    keywords = "ankle sprain, acute, kinematic, kinetics",
    author = "C Doherty and E Delahunt and Bleakley, {Chris M}",
    year = "2014",
    doi = "10.1136/bjsports-2014-093494.72",
    language = "English",
    volume = "48",
    journal = "British Journal of Sports Medicine",
    issn = "0306-3674",

    }

    TY - JOUR

    T1 - ACUTE ANKLE SPRAIN INJURY ALTERS KINEMATIC AND CENTRE OF PRESSURE MEASURES OF POSTURAL CONTROL DURING SINGLE LIMB STANCE

    AU - Doherty, C

    AU - Delahunt, E

    AU - Bleakley, Chris M

    PY - 2014

    Y1 - 2014

    N2 - Background Upright single-limb stance (SLS) is maintained via integration of visual, vestibular and somatosensory afferents. The presence of redundancies between these afferents allows the sensorimotor system to simplify a specific task within a number of strategies. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. No current investigation has supplemented kinetic analysis of eyes-open and eyes-closed SLS tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain (LAS) group to assess the adaptive capacity of the sensorimotor system to injury. Objective To compare centre of pressure (COP) and lower limb postural orientation characteristics of participants with acute LAS to non-injured participants during a SLS task. Design Cross-sectional. Setting University biomechanics laboratory. Participants 66 participants with acute LAS completed a task of eyes-open SLS on their injured and non-injured limbs (task 1). 23 of these participants successfully completed the SLS task with their eyes closed (task 2). A non-injured control group of nineteen participants completed task 1, with 16 completing task 2. Main outcome measures 3D kinematics of the hip, knee and ankle joints as well as associated fractal dimension (FD) of the COP path. Results Between trial analyses of groups revealed significant differences in lower limb kinematics and FD of the COP path for task 2. Post-hoc testing revealed that non-injured control group bilaterally assumed a position of greater hip flexion compared to LAS participants (injured limb=7.41±6.1◦ vs 1.44±4.8◦; non-injured limb=9.59±8.5◦ vs 2.16±5.6◦), with a corollary of greater FD of the COP path (injured limb=1.39±0.16 vs 1.25±0.14; non-injured limb=1.37±0.21 vs 1.23±0.14). Conclusion Acute LAS causes bilateral impairment in postural control strategies

    AB - Background Upright single-limb stance (SLS) is maintained via integration of visual, vestibular and somatosensory afferents. The presence of redundancies between these afferents allows the sensorimotor system to simplify a specific task within a number of strategies. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. No current investigation has supplemented kinetic analysis of eyes-open and eyes-closed SLS tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain (LAS) group to assess the adaptive capacity of the sensorimotor system to injury. Objective To compare centre of pressure (COP) and lower limb postural orientation characteristics of participants with acute LAS to non-injured participants during a SLS task. Design Cross-sectional. Setting University biomechanics laboratory. Participants 66 participants with acute LAS completed a task of eyes-open SLS on their injured and non-injured limbs (task 1). 23 of these participants successfully completed the SLS task with their eyes closed (task 2). A non-injured control group of nineteen participants completed task 1, with 16 completing task 2. Main outcome measures 3D kinematics of the hip, knee and ankle joints as well as associated fractal dimension (FD) of the COP path. Results Between trial analyses of groups revealed significant differences in lower limb kinematics and FD of the COP path for task 2. Post-hoc testing revealed that non-injured control group bilaterally assumed a position of greater hip flexion compared to LAS participants (injured limb=7.41±6.1◦ vs 1.44±4.8◦; non-injured limb=9.59±8.5◦ vs 2.16±5.6◦), with a corollary of greater FD of the COP path (injured limb=1.39±0.16 vs 1.25±0.14; non-injured limb=1.37±0.21 vs 1.23±0.14). Conclusion Acute LAS causes bilateral impairment in postural control strategies

    KW - ankle sprain

    KW - acute

    KW - kinematic

    KW - kinetics

    U2 - 10.1136/bjsports-2014-093494.72

    DO - 10.1136/bjsports-2014-093494.72

    M3 - Article

    VL - 48

    JO - British Journal of Sports Medicine

    T2 - British Journal of Sports Medicine

    JF - British Journal of Sports Medicine

    SN - 0306-3674

    ER -