Abstract
The growing importance of ultra-thin DLC as applied to overcoats for magnetic recording head/slider assemblies for hard disk drive systems requires an in-depth understanding of the fundamental mechanisms occurring during growth. With this aim a characterisation study of ultra-thin film (< 100 nm) hydrocarbon ion beam deposited (IBD) hydrogenated amorphous carbon (a-C:H) has been undertaken. Deposition was carried out onto argon cleaned (100) p-type silicon and Al2O3-TiC (70:30 wt%), the latter of which is commonly employed as a substrate for magnetic recording head/slider fabrication. AFM analysis of 10 nm a-C:H deposited using an energy of 200 eV per carbon atom has identified the generation of surface morphology on silicon during growth that is not observed during a-C:H growth on Al2O3-TiC deposited at the same time. TEM analysis of a similar a-C:H film on silicon suggests that the observed features are nanocrystallites (similar to 75 nm) embedded in a two-phase matrix containing nanocrystalline (< 5 nm) graphite. (C) 1998 Elsevier Science S.A.
Original language | English |
---|---|
Pages (from-to) | 1054-1058 |
Journal | Diamond and Related Materials |
Volume | 7 |
Issue number | 7 |
Publication status | Published (in print/issue) - Jul 1998 |
Bibliographical note
Diamond 97 Conference, EDINBURGH, SCOTLAND, AUG 03-08, 1997Keywords
- ultra-thin film DLC
- magnetic recording head
- TEM
- AFM