Abstract
Two types of diamond-like carbon (DLC) films were grown on Poly (ethylene terepthalate) (PET) substrates have been investigated for density, internal stress, gas permeability and structural properties by an X-ray reflectometry, surface profilometer, Raman spectroscopy and water vapour permeation analysis system, respectively. The high density tetrahedral amorphous carbon (ta-C) films (3.27 g/cm(3)) prepared by filtered vacuum cathodic arc (FCVA) showed unexpected high water vapour transmission rate (WVTR) (1.3 g/m(2) day) and a surface covered by a network of deep micro-cracks, which is due to intrinsic stress inside the ta-C films (up to 12 GPa). The soft Si doped hydrogenated amorphous carbon (Si-a:C:H) films prepared by plasma enhanced chemical vapour deposition (PECVD) exhibited low transmission rate (0.03 g/m(2) day) with a water vapour reduction factor up to 98% and a surface almost completely free of micro-cracks. Si incorporation in the a-C:H films reduced both the film density from 2.3 g/cm(3) to 1.85 g/cm(3) and the compressive stress to < 0.5 GPa. This could be understood by two possibilities. Firstly, the increasing in the hydrogen content within the films (as indicated by increasing the Raman background slope) developed more polymer-like bonds, which weakens the microstructure. Second, replacing the stronger C-C bonds (3.7 eV) by C-Si (3.21 eV) bonds where the relaxation of residual stress would occur with large strains in the C-Si bonds. (C) 2003 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 1342-1345 |
Journal | Diamond and Related Materials |
Volume | 13 |
Issue number | 4-8 |
DOIs | |
Publication status | Published (in print/issue) - Apr 2004 |
Bibliographical note
14th European Conference on Diamond, Diamond-like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, Salzburg, AUSTRIA, SEP 08-12, 2003Keywords
- DLC
- coatings
- diffusion
- surface characterization