A predictive model for paediatric autism screening

Benjamin Wingfield, Shane Miller, Pratheepan Yogarajah, Dermot Kerr, Bryan Gardiner, Sudarshi Seneviratne, Pradeepa Samarasinghe, Sonya Coleman

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)
241 Downloads (Pure)


Autism spectrum disorder is an umbrella term for a group of neurodevelopmental disorders that is associated with impairments to social interaction, communication, and behaviour. Typically, autism spectrum disorder is first detected with a screening tool (e.g. modified checklist for autism in toddlers). However, the interpretation of autism spectrum disorder behavioural symptoms varies across cultures: the sensitivity of modified checklist for autism in toddlers is as low as 25 per cent in Sri Lanka. A culturally sensitive screening tool called pictorial autism assessment schedule has overcome this problem. Low- and middle-income countries have a shortage of mental health specialists, which is a key barrier for obtaining an early autism spectrum disorder diagnosis. Early identification of autism spectrum disorder enables intervention before atypical patterns of behaviour and brain function become established. This article proposes a culturally sensitive autism spectrum disorder screening mobile application. The proposed application embeds an intelligent machine learning model and uses a clinically validated symptom checklist to monitor and detect autism spectrum disorder in low- and middle-income countries for the first time. Machine learning models were trained on clinical pictorial autism assessment schedule data and their predictive performance was evaluated, which demonstrated that the random forest was the optimal classifier (area under the receiver operating characteristic (0.98)) for embedding into the mobile screening tool. In addition, feature selection demonstrated that many pictorial autism assessment schedule questions are redundant and can be removed to optimise the screening process.

Original languageEnglish
Pages (from-to)2538-2553
Number of pages16
JournalHealth Informatics Journal
Issue number4
Early online date19 Mar 2020
Publication statusPublished (in print/issue) - 1 Dec 2020


  • autism spectrum disorder
  • decision support system
  • machine learning


Dive into the research topics of 'A predictive model for paediatric autism screening'. Together they form a unique fingerprint.

Cite this