A Novel Martingale Based Model Using a Smartphone to Detect Gait Bout in Human Activity Recognition

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
83 Downloads (Pure)

Abstract

Gait bout is when an individual performs certain physical activities such as walking or running. In the last few decades, the study of gait bout has led to substantial progress in treating gait impairment (neuropathic, myopathic and parkinsonian) in a person. Recently, gait bout study has been improved by advancing smartphone technology. To perform gait bout tasks, two different human activity scenarios, such as walking upstairs and standing, are obtained using the axis orientation of a smartphone accelerometer. To capture the pattern of walking upstairs and standing, we utilize a smartphone device attached to the waist of 30 subjects within the age group from 19 to 48 years old. We propose a human activity recognition model known as the multivariate triple exponential weighted moving average of the Martingale sequence using particle swarm optimization (MTMS(PSO)) in the experimental setup. MTMS(PSO) utilizes the martingale framework to capture gait bout in human activity recognition data. Firstly, MTMS(PSO) is an unsupervised learning method that uses smoothing techniques such as triple exponential smoothing to remove high-frequency noise from the processed activity times series, making the patterns more visible. Secondly, the activity recognition model involves computing a threshold for identifying gait bout. Thirdly, MTMS(PSO) uses logical precedent and particle swarm optimization to enhance accuracy and precision. As a result, the overall MTMS(PSO) accuracy and G-mean are 95.4% and 96.1%, respectively. In addition, MTMS(PSO) technique independently outperforms other traditional methods such as MRPM(PSO), MGM(PSO) and ELM.
Original languageEnglish
Article number4753732
Pages (from-to)1-24
Number of pages24
JournalJournal of Sensors
Volume2022
DOIs
Publication statusPublished (in print/issue) - 30 Apr 2022

Bibliographical note

Publisher Copyright:
© 2022 Jonathan Etumusei et al.

Keywords

  • Human activity recognition
  • gait bout
  • martingales
  • optimization

Fingerprint

Dive into the research topics of 'A Novel Martingale Based Model Using a Smartphone to Detect Gait Bout in Human Activity Recognition'. Together they form a unique fingerprint.

Cite this