A novel, long-acting agonist of glucose-dependent insulinotropic polypeptide suitable for once-daily administration in type 2 diabetes

Nigel Irwin, BD Green, MH Mooney, B Greer, P Harriott, CJ Bailey, Victor Gault, Finbarr O'Harte, Peter Flatt

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally protected, fatty acid-derivatized analog of GIP, N-AcGIP(LysPAL(37)), in obese diabetic (ob/ob) mice. Once-daily injections of N-AcGIP(LysPAL(37)) over a 14-day period significantly decreased plasma glucose, glycated hemoglobin, and improved glucose tolerance compared with ob/ob mice treated with saline or native GIP. Plasma insulin and pancreatic insulin content were significantly increased by N-AcGIP(LysPAL(37)). This was accompanied by a significant enhancement in the insulin response to glucose together with a notable improvement of insulin sensitivity. No evidence was found for GIP receptor desensitization and the metabolic effects of NAcGIP(LysPAL(37)) were independent of any change in feeding or body weight. Similar daily injections of native GIP did not affect any of the parameters measured. These data demonstrate the ability of once-daily injections of N-terminally modified, fatty acid-derivatized analogs of GIP, such as N-AcGIP(LysPAL(37)), to improve diabetes control and to offer a new class of agents for the treatment of type 2 diabetes.
LanguageEnglish
Pages1187-1194
JournalJournal of Pharmacology and Experimental Therapeutics
Volume314
Issue number3
DOIs
Publication statusPublished - Sep 2005

Fingerprint

Type 2 Diabetes Mellitus
Glucose
Peptides
Insulin
Injections
Fatty Acids
Gastrointestinal Hormones
Glycosylated Hemoglobin A
Hypoglycemic Agents
Insulin Resistance
Body Weight
Kidney
Enzymes
Therapeutics

Cite this

@article{01ce621241a448e9a990e3352ba0dd48,
title = "A novel, long-acting agonist of glucose-dependent insulinotropic polypeptide suitable for once-daily administration in type 2 diabetes",
abstract = "Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally protected, fatty acid-derivatized analog of GIP, N-AcGIP(LysPAL(37)), in obese diabetic (ob/ob) mice. Once-daily injections of N-AcGIP(LysPAL(37)) over a 14-day period significantly decreased plasma glucose, glycated hemoglobin, and improved glucose tolerance compared with ob/ob mice treated with saline or native GIP. Plasma insulin and pancreatic insulin content were significantly increased by N-AcGIP(LysPAL(37)). This was accompanied by a significant enhancement in the insulin response to glucose together with a notable improvement of insulin sensitivity. No evidence was found for GIP receptor desensitization and the metabolic effects of NAcGIP(LysPAL(37)) were independent of any change in feeding or body weight. Similar daily injections of native GIP did not affect any of the parameters measured. These data demonstrate the ability of once-daily injections of N-terminally modified, fatty acid-derivatized analogs of GIP, such as N-AcGIP(LysPAL(37)), to improve diabetes control and to offer a new class of agents for the treatment of type 2 diabetes.",
author = "Nigel Irwin and BD Green and MH Mooney and B Greer and P Harriott and CJ Bailey and Victor Gault and Finbarr O'Harte and Peter Flatt",
year = "2005",
month = "9",
doi = "10.1124/jpet.105.086082",
language = "English",
volume = "314",
pages = "1187--1194",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
number = "3",

}

TY - JOUR

T1 - A novel, long-acting agonist of glucose-dependent insulinotropic polypeptide suitable for once-daily administration in type 2 diabetes

AU - Irwin, Nigel

AU - Green, BD

AU - Mooney, MH

AU - Greer, B

AU - Harriott, P

AU - Bailey, CJ

AU - Gault, Victor

AU - O'Harte, Finbarr

AU - Flatt, Peter

PY - 2005/9

Y1 - 2005/9

N2 - Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally protected, fatty acid-derivatized analog of GIP, N-AcGIP(LysPAL(37)), in obese diabetic (ob/ob) mice. Once-daily injections of N-AcGIP(LysPAL(37)) over a 14-day period significantly decreased plasma glucose, glycated hemoglobin, and improved glucose tolerance compared with ob/ob mice treated with saline or native GIP. Plasma insulin and pancreatic insulin content were significantly increased by N-AcGIP(LysPAL(37)). This was accompanied by a significant enhancement in the insulin response to glucose together with a notable improvement of insulin sensitivity. No evidence was found for GIP receptor desensitization and the metabolic effects of NAcGIP(LysPAL(37)) were independent of any change in feeding or body weight. Similar daily injections of native GIP did not affect any of the parameters measured. These data demonstrate the ability of once-daily injections of N-terminally modified, fatty acid-derivatized analogs of GIP, such as N-AcGIP(LysPAL(37)), to improve diabetes control and to offer a new class of agents for the treatment of type 2 diabetes.

AB - Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally protected, fatty acid-derivatized analog of GIP, N-AcGIP(LysPAL(37)), in obese diabetic (ob/ob) mice. Once-daily injections of N-AcGIP(LysPAL(37)) over a 14-day period significantly decreased plasma glucose, glycated hemoglobin, and improved glucose tolerance compared with ob/ob mice treated with saline or native GIP. Plasma insulin and pancreatic insulin content were significantly increased by N-AcGIP(LysPAL(37)). This was accompanied by a significant enhancement in the insulin response to glucose together with a notable improvement of insulin sensitivity. No evidence was found for GIP receptor desensitization and the metabolic effects of NAcGIP(LysPAL(37)) were independent of any change in feeding or body weight. Similar daily injections of native GIP did not affect any of the parameters measured. These data demonstrate the ability of once-daily injections of N-terminally modified, fatty acid-derivatized analogs of GIP, such as N-AcGIP(LysPAL(37)), to improve diabetes control and to offer a new class of agents for the treatment of type 2 diabetes.

U2 - 10.1124/jpet.105.086082

DO - 10.1124/jpet.105.086082

M3 - Article

VL - 314

SP - 1187

EP - 1194

JO - Journal of Pharmacology and Experimental Therapeutics

T2 - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 3

ER -