A Novel Hybrid Convolutional Neural Network- and Gated Recurrent Unit-Based Paradigm for IoT Network Traffic Attack Detection in Smart Cities

Brij B. Gupta , Kwok Tai Chui, Akshat Gaurav , Varsha Arya , Priyanka Chaurasia 

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
20 Downloads (Pure)

Abstract

Internet of Things (IoT) devices within smart cities, require innovative detection methods. This paper addresses this critical challenge by introducing a deep learning-based approach for the detection of network traffic attacks in IoT ecosystems. Leveraging the Kaggle dataset, our model integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to capture both spatial and sequential features in network traffic data. We trained and evaluated our model over ten epochs, achieving an impressive overall accuracy rate of 99%. The classification report reveals the model’s proficiency in distinguishing various attack categories, including ‘Normal’, ‘DoS’ (Denial of Service), ‘Probe’, ‘U2R’ (User to Root), and ‘Sybil’. Additionally, the confusion matrix offers valuable insights into the model’s performance across these attack types. In terms of overall accuracy, our model achieves an impressive accuracy rate of 99% across all attack categories. The weighted- average F1-score is also 99%, showcasing the model’s robust performance in classifying network traffic attacks in IoT devices for smart cities. This advanced architecture exhibits the potential to fortify IoT device security in the complex landscape of smart cities, effectively contributing to the safeguarding of critical infrastructure
Original languageEnglish
Article number8686
Pages (from-to)1-13
Number of pages13
JournalSensors
Volume23
Issue number21
Early online date24 Oct 2023
DOIs
Publication statusPublished online - 24 Oct 2023

Keywords

  • network traffic attacks
  • IoT
  • smart cities
  • deep learning
  • CNN
  • GRU

Fingerprint

Dive into the research topics of 'A Novel Hybrid Convolutional Neural Network- and Gated Recurrent Unit-Based Paradigm for IoT Network Traffic Attack Detection in Smart Cities'. Together they form a unique fingerprint.

Cite this