Abstract
Here, we introduce core-shell nanofibers based on chitosan (CS)-loaded poly (ε-caprolactone) (PCL) shell and 5-fluorouracil (5-FU)-loaded Poly(N-vinyl-2-pyrrolidone) (PVP) core for synergistic therapy of melanoma skin cancer. The yielded nanofibers exhibited an average diameter of 503 nm with high drug-encapsulating efficiency and good mechanical properties. Moreover, the burst release of 5-FU significantly inhibited melanoma skin cancer cells (B16F10 cells), and the sustained release of CS exhibited “remedying effects” on normal skin cells (L929 cells) after suffering adverse effects from 5-FU treatment. For the B16F10 cells, the early apoptosis cells increased from 0.8% to 62.2% after being treated with blended films loaded with 5-FU (2 wt%) for 24 h; for the L929 cells, the vital cells increased from 68.9% to 77.0%, and the early apoptosis of stage cells decreased from 12.3% to 10.9% after being treated with blended films with CS (8 wt%) for 24 h. In conclusion, the results introduced in this work can be a promising strategy for cancer treatment and possesses synergism potential to broaden an avenue for chemotherapeutic therapy with minimum adverse effects on normal cells.
Original language | English |
---|---|
Article number | 105002 |
Journal | European Journal of Pharmaceutical Sciences |
Volume | 137 |
Early online date | 11 Jul 2019 |
DOIs | |
Publication status | Published (in print/issue) - 1 Sept 2019 |
Keywords
- 5-Fluorouracil
- Chitosan
- Controlled release
- Core-shell nanofiber
- Skin cancer