A multifunctional brain computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel electrodes.

Ivo Kathner, Sebastian Halder, Christoph Hintermuller, Arnau Espinosa, Christoph Guger, Felip Miralles, Eloisa Vargiu, Stefan Dauwalder, Rafeal-Palou Xavier, Marc Sola, Jean Daly-Lynn, Elaine Armstong, Suzanne Martin, Andrea Kubler

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.
LanguageEnglish
Pages286
JournalFrontiers in Neurosciences
Volume11
Early online date22 May 2017
DOIs
Publication statusE-pub ahead of print - 22 May 2017

Fingerprint

Brain computer interface
Gels
Electrodes
Electroencephalography
Graphical user interfaces
Feedback
Hardware
Network protocols

Keywords

  • Brain-computer interface
  • EEG
  • practical electrodes
  • assistive technology
  • end user evaluation

Cite this

Kathner, Ivo ; Halder, Sebastian ; Hintermuller, Christoph ; Espinosa, Arnau ; Guger, Christoph ; Miralles, Felip ; Vargiu, Eloisa ; Dauwalder, Stefan ; Xavier, Rafeal-Palou ; Sola, Marc ; Daly-Lynn, Jean ; Armstong, Elaine ; Martin, Suzanne ; Kubler, Andrea. / A multifunctional brain computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel electrodes. In: Frontiers in Neurosciences. 2017 ; Vol. 11. pp. 286.
@article{a0137a8185524e6da89469125fb6fb36,
title = "A multifunctional brain computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel electrodes.",
abstract = "Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13{\%}). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.",
keywords = "Brain-computer interface, EEG, practical electrodes, assistive technology, end user evaluation",
author = "Ivo Kathner and Sebastian Halder and Christoph Hintermuller and Arnau Espinosa and Christoph Guger and Felip Miralles and Eloisa Vargiu and Stefan Dauwalder and Rafeal-Palou Xavier and Marc Sola and Jean Daly-Lynn and Elaine Armstong and Suzanne Martin and Andrea Kubler",
note = "Reference text: Amiri, S., Fazel-Rezai, R., and Asadpour, V. (2013). A Review of hybrid brain-computer interface systems. Adv. Hum. Comput. Interact. 2013:e187024. doi: 10.1155/2013/187024 CrossRef Full Text | Google Scholar Bleichner, M. G., Lundbeck, M., Selisky, M., Minow, F., J{\"a}ger, M., Emkes, R., et al. (2015). Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiol. Rep. 3:e12362. doi: 10.14814/phy2.12362 CrossRef Full Text | Google Scholar Botrel, L., Holz, E. M., and K{\"u}bler, A. (2015). Brain Painting V2: evaluation of P300-based brain-computer interface for creative expression by an end-user following the user-centered design. Brain Comput. Interf. 2, 135–149. doi: 10.1080/2326263X.2015.1100038 CrossRef Full Text | Google Scholar Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., and Schalk, G. (2010). Does the “P300” speller depend on eye gaze? J. Neural Eng. 7:056013. doi: 10.1088/1741-2560/7/5/056013 PubMed Abstract | CrossRef Full Text | Google Scholar Carabalona, R., Castiglioni, P., and Gramatica, F. (2009). Brain-computer interfaces and neurorehabilitation. Stud. Health Technol. Inform. 145, 160–176. doi: 10.3233/978-1-60750-018-6-160 PubMed Abstract | CrossRef Full Text | Google Scholar Carabalona, R., Grossi, F., Tessadri, A., Castiglioni, P., Caracciolo, A., and de Munari, I. (2012). Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home. Ergonomics 55, 552–563. doi: 10.1080/00140139.2012.661083 PubMed Abstract | CrossRef Full Text | Google Scholar Chi, Y. M., and Cauwenberghs, G. (2010). “Wireless non-contact EEG/ECG electrodes for body sensor networks,” in 2010 International Conference on Body Sensor Networks, (Washington, DC: IEEE Computer Society), 297–301. doi: 10.1109/BSN.2010.52 CrossRef Full Text | Google Scholar Chi, Y. M., Jung, T. P., and Cauwenberghs, G. (2010). Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119. doi: 10.1109/RBME.2010.2084078 PubMed Abstract | CrossRef Full Text | Google Scholar Daly, J., Armstrong, E., Thomson, E., Pinegger, A., M{\"u}ller-Putz, G., and Martin, S. (2015a). P300 brain computer interface control after an acquired brain injury. Int. J. Recent Innov. Trends Comput. Commun. 3, 318–325. doi: 10.17762/ijritcc2321-8169.150165 CrossRef Full Text | Google Scholar Daly, J., Pinegger, A., Armstrong, E., Thomson, E., M{\"u}ller-Putz, G., and Martin, S. (2015b). In pursuit of an easy to use brain computer interface for domestic use in a population with brain injury. Int. J. Recent Innov. Trends Comput. Commun. 3, 4019–4029. doi: 10.17762/ijritcc2321-8169.1506108 CrossRef Full Text | Google Scholar Debener, S., Emkes, R., De Vos, M., and Bleichner, M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 5:16743. doi: 10.1038/srep16743 PubMed Abstract | CrossRef Full Text | Google Scholar Debener, S., Minow, F., Emkes, R., Gandras, K., and De Vos, M. (2012). How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1617–1621. doi: 10.1111/j.1469-8986.2012.01471.x PubMed Abstract | CrossRef Full Text | Google Scholar Demers, L., Weiss-Lambrou, R., and Ska, B. (2002). The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): an overview and recent progress. Technol Disabil. 14, 101–105. doi: 10.13072/midss.298 CrossRef Full Text | Google Scholar De Vos, M., Gandras, K., and Debener, S. (2014). Towards a truly mobile auditory brain–computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91, 46–53. doi: 10.1016/j.ijpsycho.2013.08.010 PubMed Abstract | CrossRef Full Text | Google Scholar Farwell, L. A., and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523. doi: 10.1016/0013-4694(88)90149-6 PubMed Abstract | CrossRef Full Text | Google Scholar Griss, P., Enoksson, P., Tolvanen-Laakso, H. K., Merilainen, P., Ollmar, S., and Stemme, G. (2001). Micromachined electrodes for biopotential measurements. J. Microelectromech. Syst. 10, 10–16. doi: 10.1109/84.911086 CrossRef Full Text | Google Scholar Grozea, C., Voinescu, C. D., and Fazli, S. (2011). Bristle-sensors–low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 8:025008. doi: 10.1088/1741-2560/8/2/025008 PubMed Abstract | CrossRef Full Text | Google Scholar Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., et al. (2009). How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 462, 94–98. doi: 10.1016/j.neulet.2009.06.045 PubMed Abstract | CrossRef Full Text | Google Scholar Guger, C., Krausz, G., Allison, B. Z., and Edlinger, G. (2012). Comparison of dry and gel based electrodes for P300 brain–computer interfaces. Front. Neurosci. 6:60. doi: 10.3389/fnins.2012.00060 PubMed Abstract | CrossRef Full Text | Google Scholar Halder, S., K{\"a}thner, I., and K{\"u}bler, A. (2016). Training leads to increased auditory brain–computer interface performance of end-users with motor impairments. Clin. Neurophysiol. 127, 1288–1296. doi: 10.1016/j.clinph.2015.08.007 PubMed Abstract | CrossRef Full Text | Google Scholar Halder, S., Pinegger, A., K{\"a}thner, I., Wriessnegger, S. C., Faller, J., Pires Antunes, J. B., et al. (2015). Brain-controlled applications using dynamic P300 speller matrices. Artif. Intell. Med. 63, 7–17. doi: 10.1016/j.artmed.2014.12.001 PubMed Abstract | CrossRef Full Text | Google Scholar Hart, S. G., and Staveland, L. E. (1988). “Development of NASA-TLX (Task Load Index): results of empirical and theoretical research,” in Advances in Psychology, Vol. 52. eds P. A. Hancock. and N. Meshkati (North-Holland), 139–183. Available online at: http://www.sciencedirect.com/science/article/pii/S0166411508623869 Google Scholar Herweg, A., Gutzeit, J., Kleih, S., and K{\"u}bler, A. (2016). Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol. Psychol. 121(Pt A), 117–124. doi: 10.1016/j.biopsycho.2016.10.006 PubMed Abstract | CrossRef Full Text | Google Scholar Hill, N. J., Ricci, E., Haider, S., McCane, L. M., Heckman, S., Wolpaw, J. R., et al. (2014). A practical, intuitive brain–computer interface for communicating “yes” or “no” by listening. J. Neural Eng. 11:035003. doi: 10.1088/1741-2560/11/3/035003 PubMed Abstract | CrossRef Full Text | Google Scholar Hinterm{\"u}ller, C., Vargiu, E., Halder, S., Daly, J., Miralles, F., and Lowish, H. (2015) “Brain neural computer interface for everyday home usage,” in Universal Access in Human-Computer Interaction. Access to Interaction. UAHCI Toronto, Canada, 2015. Vol. 9176, Lecture Notes in Computer Science, eds M. Antona C. Stephanidis (Cham: Springer). doi: 10.1007/978-3-319-20681-3_41. CrossRef Full Text | Google Scholar H{\"o}hne, J., Schreuder, M., Blankertz, B., and Tangermann, M. (2011). A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front. Neurosci. 5:99. doi: 10.3389/fnins.2011.00099 PubMed Abstract | CrossRef Full Text | Google Scholar Holz, E. M., Botrel, L., Kaufmann, T., and K{\"u}bler, A. (2015a). Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch. Phys. Med. Rehabil. 96(3 Suppl.), S16–S26. doi: 10.1016/j.apmr.2014.03.035 PubMed Abstract | CrossRef Full Text | Google Scholar Holz, E. M., Botrel, L., and K{\"u}bler, A. (2015b). Independent home use of Brain Painting improves quality of life of two artists in the locked-in state diagnosed with amyotrophic lateral sclerosis. Brain Comput. Interf. 2, 117–134. doi: 10.1080/2326263X.2015.1100048 CrossRef Full Text | Google Scholar Huggins, J. E., Moinuddin, A. A., Chiodo, A. E., and Wren, P. A. (2015). What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch. Phys. Med. Rehabil. 96(3 Suppl.), S38–S45.e5. doi: 10.1016/j.apmr.2014.05.028 PubMed Abstract | CrossRef Full Text | Google Scholar Huggins, J. E., Wren, P. A., and Gruis, K. L. (2011). What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 318–324. doi: 10.3109/17482968.2011.572978 PubMed Abstract | CrossRef Full Text | Google Scholar ISO 9241–210. (2008). Ergonomics of Human System Interaction - Part 210: Human-Centred Design for Interactive Systems (Formerly Known As 13407). Geneva: International Organization for Standardization (ISO) Switzerland. K{\"a}thner, I., Daly, J., Halder, S., R{\"a}derscheidt, J., Armstrong, E., Dauwalder, S., et al. (2014). “A P300 BCI for e-inclusion, cognitive rehabilitation and smart home control,” in Proceedings of the 6th International BCI Conference Graz 2014, eds G. R. M{\"u}ller-Putz, G. Bauernfeind, C. Brunner, D. Steyrl, S. Wriessnegger, and R. Scherer (Graz: Graz University of Technology Publishing House), 60–63. doi: 10.3217/978-3-85125-378-8-15 CrossRef Full Text | Google Scholar K{\"a}thner, I., K{\"u}bler, A., and Halder, S. (2015a). Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state. J. Neuroeng. Rehabil. 12:76. doi: 10.1186/s12984-015-0071-z PubMed Abstract | CrossRef Full Text | Google Scholar K{\"a}thner, I., K{\"u}bler, A., and Halder, S. (2015b). Rapid P300 brain-computer interface communication with a head-mounted display. Neuroprosthetics 9:207. doi: 10.3389/fnins.2015.00207 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Hammer, E. M., and K{\"u}bler, A. (2011a). “ERPs contributing to classification in the “P300” BCI,” in Procedings of the Fifth International BCI Conference (Graz: Verlag der Technischen Universit{\"a}t Graz), 136–139. Google Scholar Kaufmann, T., Holz, E. M., and K{\"u}bler, A. (2013a). Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front. Neurosci. 7:129. doi: 10.3389/fnins.2013.00129 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Schulz, S. M., Gr{\"u}nzinger, C., and K{\"u}bler, A. (2011b). Flashing characters with famous faces improves ERP-based brain-computer interface performance. J. Neural Eng. 8:056016. doi: 10.1088/1741-2560/8/5/056016 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Schulz, S. M., K{\"o}blitz, A., Renner, G., Wessig, C., and K{\"u}bler, A. (2013b). Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clin. Neurophysiol. 124, 893–900. doi: 10.1016/j.clinph.2012.11.006 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., V{\"o}lker, S., Gunesch, L., and K{\"u}bler, A. (2012). Spelling is just a click away – a user-centered brain-computer interface including auto-calibration and predictive text entry. Front. Neurosci. 6:72. doi: 10.3389/fnins.2012.00072 PubMed Abstract | CrossRef Full Text | Google Scholar Kleih, S. C., Herweg, A., Kaufmann, T., Staiger-S{\"a}lzer, P., Gerstner, N., and K{\"u}bler, A. (2015). The WIN-speller: a new intuitive auditory brain-computer interface spelling application. Front. Neurosci. 9:346. doi: 10.3389/fnins.2015.00346 PubMed Abstract | CrossRef Full Text | Google Scholar Kleih, S. C., Kaufmann, T., Zickler, C., Halder, S., Leotta, F., Cincotti, F., et al. (2011). Out of the frying pan into the fire–the P300-based BCI faces real-world challenges. Progr. Brain Res. 194, 27–46. doi: 10.1016/B978-0-444-53815-4.00019-4 CrossRef Full Text | Google Scholar K{\"u}bler, A., and Birbaumer, N. (2008). Brain–computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119, 2658–2666. doi: 10.1016/j.clinph.2008.06.019 PubMed Abstract | CrossRef Full Text | Google Scholar K{\"u}bler, A., Holz, E. M., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S. C., et al. (2014). The user-centered design as novel perspective for evaluating the usability of bci-controlled applications. PLoS ONE 9:e112392. doi: 10.1371/journal.pone.0112392 PubMed Abstract | CrossRef Full Text | Google Scholar K{\"u}bler, A., Mattia, D., Rupp, R., and Tangermann, M. (2013). Facing the challenge: bringing brain–computer interfaces to end-users. Artif. Intell. Med. 59, 55–60. doi: 10.1016/j.artmed.2013.08.002 PubMed Abstract | CrossRef Full Text | Google Scholar Lenhardt, A., Kaper, M., and Ritter, H. J. (2008). An adaptive P300-based online brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 121–130. doi: 10.1109/TNSRE.2007.912816 PubMed Abstract | CrossRef Full Text | Google Scholar Liao, L.-D., Chen, C.-Y., Wang, I.-J., Chen, S.-F., Li, S.-Y., Chen, B.-W., et al. (2012a). Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. Neuroeng. Rehabil. 9:5. doi: 10.1186/1743-0003-9-5 PubMed Abstract | CrossRef Full Text | Google Scholar Liao, L. D., Lin, C. T., McDowell, K., Wickenden, A. E., Gramann, K., Jung, T. P., et al. (2012b). Biosensor technologies for augmented brain–computer interfaces in the next decades. Proc. IEEE 100, 1553–1566. doi: 10.1109/JPROC.2012.2184829 CrossRef Full Text | Google Scholar Liao, L.-D., Wang, I.-J., Chen, S.-F., Chang, J.-Y., and Lin, C.-T. (2011). Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 11, 5819–5834. doi: 10.3390/s110605819 PubMed Abstract | CrossRef Full Text | Google Scholar Lin, C.-T., Liao, L.-D., Liu, Y.-H., Wang, I.-J., Lin, B.-S., and Chang, J.-Y. (2011). Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 58, 1200–1207. doi: 10.1109/TBME.2010.2102353 PubMed Abstract | CrossRef Full Text | Google Scholar Lo, C.-C., Chien, T.-Y., Chen, Y.-C., Tsai, S.-H., Fang, W.-C., and Lin, B.-S. (2016). A wearable channel selection-based brain-computer interface for motor imagery detection. Sensors 16:213. doi: 10.3390/s16020213 PubMed Abstract | CrossRef Full Text | Google Scholar Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M., Rosenkranz, K., et al. (2012). The in-the-ear recording concept: user-centered and wearable brain monitoring. IEEE Pulse 3, 32–42. doi: 10.1109/MPUL.2012.2216717 PubMed Abstract | CrossRef Full Text | Google Scholar Looney, D., Park, C., Kidmose, P., Rank, M. L., Ungstrup, M., Rosenkranz, K., et al. (2011). “An in-the-ear platform for recording electroencephalogram,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, (Boston, MA), 6882–6885. doi: 10.1109/IEMBS.2011.6091733 CrossRef Full Text | Google Scholar Lopez-Gordo, M. A., Sanchez-Morillo, D., and Valle, F. P. (2014). Dry EEG electrodes. Sensors 14, 12847–12870. doi: 10.3390/s140712847 PubMed Abstract | CrossRef Full Text | Google Scholar Mak, J. N., Arbel, Y., Minett, J. W., McCane, L. M., Yuksel, B., Ryan, D., et al. (2011). Optimizing the P300-based brain–computer interface: current status, limitations and future directions. J. Neural Eng. 8:025003. doi: 10.1088/1741-2560/8/2/025003 PubMed Abstract | CrossRef Full Text | Google Scholar McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., Sellers, E. W., et al. (2015). P300-based brain-computer interface (BCI) event-related potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin. Neurophysiol. 126, 2124–2131. doi: 10.1016/j.clinph.2015.01.013 PubMed Abstract | CrossRef Full Text | Google Scholar Mill{\'a}n, J. D. R., Rupp, R., M{\"u}ller-Putz, G. R., Murray-Smith, R., Giugliemma, C., Tangermann, M., et al. (2010). Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161. doi: 10.3389/fnins.2010.00161 PubMed Abstract | CrossRef Full Text | Google Scholar Miralles, F., Vargiu, E., Dauwalder, S., Sola, M., M{\"u}ller-Putz, G. R., Wriessnegger, S. C., et al. (2015a). Brain computer interface on track to home. Sci. World J. 2015:e623896. doi: 10.1155/2015/623896 PubMed Abstract | CrossRef Full Text | Google Scholar Miralles, F., Vargiu, E., Rafael-Palou, X., Sol{\`a}, M., Dauwalder, S., Guger, C., et al. (2015b). Brain–computer interfaces on track to home: results of the evaluation at disabled end-users' homes and lessons learnt. Front. ICT 2:25 doi: 10.3389/fict.2015.00025 CrossRef Full Text | Google Scholar M{\"u}n{\ss}inger, J. I., Halder, S., Kleih, S. C., Furdea, A., Raco, V., H{\"o}sle, A., et al. (2010). Brain Painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front. Neurosci. 4:182. doi: 10.3389/fnins.2010.00182 PubMed Abstract | CrossRef Full Text | Google Scholar Nam, C. S., Jeon, Y., Li, Y., Kim, Y.-J., and Yoon, H. (2009). Usability of the P300 Speller: towards a more sustainable brain–computer interface. eMinds: Int. J. Hum. Comput. Interact. 1, 111–125. Google Scholar Nathan, V., and Jafari, R. (2014). “Characterizing contact impedance, signal quality and robustness as a function of the cardinality and arrangement of fingers on dry contact EEG electrodes,” in Conference Proceedings:…Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014 (Chicago), 3755–3758. doi: 10.1109/EMBC.2014.6944440 CrossRef Full Text | Google Scholar Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., et al. (2008). A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119, 1909–1916. doi: 10.1016/j.clinph.2008.03.034 PubMed Abstract | CrossRef Full Text | Google Scholar Pfurtscheller, G., Allison, B. Z., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., et al. (2010). The hybrid BCI. Neuroprosthetics 4:30. doi: 10.3389/fnpro.2010.00003 PubMed Abstract | CrossRef Full Text | Google Scholar Pinegger, A., Faller, J., Halder, S., Wriessnegger, S. C., and M{\"u}ller-Putz, G. R. (2015). Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach. J. Neural Eng. 12:014001. doi: 10.1088/1741-2560/12/1/014001 PubMed Abstract | CrossRef Full Text | Google Scholar Pinegger, A., Wriessnegger, S. C., Faller, J., and M{\"u}ller-Putz, G. R. (2016). Evaluation of different EEG acquisition systems concerning their suitability for building a brain–computer interface: case studies. Front. Neurosci. 10:441. doi: 10.3389/fnins.2016.00441 PubMed Abstract | CrossRef Full Text | Google Scholar Riccio, A., Holz, E. M., Aric{\`o}, P., Leotta, F., Aloise, F., Desideri, L., et al. (2015). Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Arch. Phys. Med. Rehabil. 96, S54–S61. doi: 10.1016/j.apmr.2014.05.029 PubMed Abstract | CrossRef Full Text | Google Scholar Riccio, A., Mattia, D., Simione, L., Olivetti, M., and Cincotti, F. (2012). Eye-gaze independent EEG-based brain-computer interfaces for communication. J. Neural Eng. 9:045001. doi: 10.1088/1741-2560/9/4/045001 PubMed Abstract | CrossRef Full Text | Google Scholar Schreuder, M., H{\"o}hne, J., Blankertz, B., Haufe, S., Dickhaus, T., and Tangermann, M. (2013). Optimizing event-related potential based brain–computer interfaces: a systematic evaluation of dynamic stopping methods. J. Neural Eng. 10:036025. doi: 10.1088/1741-2560/10/3/036025 PubMed Abstract | CrossRef Full Text | Google Scholar Schreuder, M., Rost, T., and Tangermann, M. (2011). Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI. Front. Neurosci. 5:112. doi: 10.3389/fnins.2011.00112 PubMed Abstract | CrossRef Full Text | Google Scholar Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R. (2006). A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 73, 242–252. doi: 10.1016/j.biopsycho.2006.04.007 PubMed Abstract | CrossRef Full Text | Google Scholar Sellers, E. W., Vaughan, T. M., and Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. Amyotroph. Lateral Scler. 11, 449–455. doi: 10.3109/17482961003777470 PubMed Abstract | CrossRef Full Text | Google Scholar Simon, N., K{\"a}thner, I., Ruf, C. A., Pasqualotto, E., K{\"u}bler, A., and Halder, S. (2015). An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user. Front. Hum. Neurosci. 8:1039. doi: 10.3389/fnhum.2014.01039 PubMed Abstract | CrossRef Full Text | Google Scholar Toyama, S. P., Takano, K. P., and Kansaku, K. M. (2012). A non-adhesive solid-gel electrode for a non-invasive brain–machine interface. Neuroprosthetics 3:114. doi: 10.3389/fneur.2012.00114 PubMed Abstract | CrossRef Full Text | Google Scholar Vargiu, E., Daly, J., Dauwalder, S., Armstrong, E., Martin, S., and Miralles, F. (2014). “Cognitive rehabilitation through BNCI: serious games in BackHome,” in Proceedings of the 6th International BCI Conference Graz 2014, eds G. R. M{\"u}ller-Putz, G. Bauernfeind, C. Brunner, D. Steyrl, S. Wriessnegger, and R. Scherer (Graz: Graz University of Technology Publishing House), 33–36. doi: 10.3217/978-3-85125-378-8-9 CrossRef Full Text | Google Scholar Wills, S. A., and MacKay, D. J. C. (2006). “DASHER–an efficient writing system for brain-computer interfaces?” IEEE Trans. Neural Syst. Rehabil. Eng 14, 244–246. doi: 10.1109/TNSRE.2006.875573 PubMed Abstract | CrossRef Full Text | Google Scholar Yu, T., Li, Y., Long, J., and Gu, Z. (2012). Surfing the internet with a BCI mouse. J. Neural Eng. 9:036012. doi: 10.1088/1741-2560/9/3/036012 PubMed Abstract | CrossRef Full Text | Google Scholar Yu, Y. H., Lu, S. W., Liao, L. D., and Lin, C. T. (2014). Design, fabrication, and experimental validation of novel flexible silicon-based dry sensors for electroencephalography signal measurements. IEEE J. Transl. Eng. Health Med. 2, 1–7. doi: 10.1109/JTEHM.2014.2367518 PubMed Abstract | CrossRef Full Text | Google Scholar Zander, T. O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., et al. (2011). A dry EEG-system for scientific research and brain–computer interfaces. Neuroprosthetics 5:53. doi: 10.3389/fnins.2011.00053 PubMed Abstract | CrossRef Full Text | Google Scholar Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., et al. (2011). A Brain-computer interface as input channel for a standard assistive technology software. Clin. EEG Neurosc. 42, 236–244. doi: 10.1177/155005941104200409 PubMed Abstract | CrossRef Full Text | Google Scholar",
year = "2017",
month = "5",
day = "22",
doi = "10.3389/fnins.2017.00286",
language = "English",
volume = "11",
pages = "286",
journal = "Frontiers in Neuroscience",
issn = "1662-4548",

}

Kathner, I, Halder, S, Hintermuller, C, Espinosa, A, Guger, C, Miralles, F, Vargiu, E, Dauwalder, S, Xavier, R-P, Sola, M, Daly-Lynn, J, Armstong, E, Martin, S & Kubler, A 2017, 'A multifunctional brain computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel electrodes.', Frontiers in Neurosciences, vol. 11, pp. 286. https://doi.org/10.3389/fnins.2017.00286

A multifunctional brain computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel electrodes. / Kathner, Ivo; Halder, Sebastian; Hintermuller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Xavier, Rafeal-Palou; Sola, Marc; Daly-Lynn, Jean; Armstong, Elaine; Martin, Suzanne; Kubler, Andrea.

In: Frontiers in Neurosciences, Vol. 11, 22.05.2017, p. 286.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A multifunctional brain computer interface intended for home use: an evaluation with healthy participants and potential end users with dry and gel electrodes.

AU - Kathner, Ivo

AU - Halder, Sebastian

AU - Hintermuller, Christoph

AU - Espinosa, Arnau

AU - Guger, Christoph

AU - Miralles, Felip

AU - Vargiu, Eloisa

AU - Dauwalder, Stefan

AU - Xavier, Rafeal-Palou

AU - Sola, Marc

AU - Daly-Lynn, Jean

AU - Armstong, Elaine

AU - Martin, Suzanne

AU - Kubler, Andrea

N1 - Reference text: Amiri, S., Fazel-Rezai, R., and Asadpour, V. (2013). A Review of hybrid brain-computer interface systems. Adv. Hum. Comput. Interact. 2013:e187024. doi: 10.1155/2013/187024 CrossRef Full Text | Google Scholar Bleichner, M. G., Lundbeck, M., Selisky, M., Minow, F., Jäger, M., Emkes, R., et al. (2015). Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiol. Rep. 3:e12362. doi: 10.14814/phy2.12362 CrossRef Full Text | Google Scholar Botrel, L., Holz, E. M., and Kübler, A. (2015). Brain Painting V2: evaluation of P300-based brain-computer interface for creative expression by an end-user following the user-centered design. Brain Comput. Interf. 2, 135–149. doi: 10.1080/2326263X.2015.1100038 CrossRef Full Text | Google Scholar Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., and Schalk, G. (2010). Does the “P300” speller depend on eye gaze? J. Neural Eng. 7:056013. doi: 10.1088/1741-2560/7/5/056013 PubMed Abstract | CrossRef Full Text | Google Scholar Carabalona, R., Castiglioni, P., and Gramatica, F. (2009). Brain-computer interfaces and neurorehabilitation. Stud. Health Technol. Inform. 145, 160–176. doi: 10.3233/978-1-60750-018-6-160 PubMed Abstract | CrossRef Full Text | Google Scholar Carabalona, R., Grossi, F., Tessadri, A., Castiglioni, P., Caracciolo, A., and de Munari, I. (2012). Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home. Ergonomics 55, 552–563. doi: 10.1080/00140139.2012.661083 PubMed Abstract | CrossRef Full Text | Google Scholar Chi, Y. M., and Cauwenberghs, G. (2010). “Wireless non-contact EEG/ECG electrodes for body sensor networks,” in 2010 International Conference on Body Sensor Networks, (Washington, DC: IEEE Computer Society), 297–301. doi: 10.1109/BSN.2010.52 CrossRef Full Text | Google Scholar Chi, Y. M., Jung, T. P., and Cauwenberghs, G. (2010). Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119. doi: 10.1109/RBME.2010.2084078 PubMed Abstract | CrossRef Full Text | Google Scholar Daly, J., Armstrong, E., Thomson, E., Pinegger, A., Müller-Putz, G., and Martin, S. (2015a). P300 brain computer interface control after an acquired brain injury. Int. J. Recent Innov. Trends Comput. Commun. 3, 318–325. doi: 10.17762/ijritcc2321-8169.150165 CrossRef Full Text | Google Scholar Daly, J., Pinegger, A., Armstrong, E., Thomson, E., Müller-Putz, G., and Martin, S. (2015b). In pursuit of an easy to use brain computer interface for domestic use in a population with brain injury. Int. J. Recent Innov. Trends Comput. Commun. 3, 4019–4029. doi: 10.17762/ijritcc2321-8169.1506108 CrossRef Full Text | Google Scholar Debener, S., Emkes, R., De Vos, M., and Bleichner, M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 5:16743. doi: 10.1038/srep16743 PubMed Abstract | CrossRef Full Text | Google Scholar Debener, S., Minow, F., Emkes, R., Gandras, K., and De Vos, M. (2012). How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1617–1621. doi: 10.1111/j.1469-8986.2012.01471.x PubMed Abstract | CrossRef Full Text | Google Scholar Demers, L., Weiss-Lambrou, R., and Ska, B. (2002). The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): an overview and recent progress. Technol Disabil. 14, 101–105. doi: 10.13072/midss.298 CrossRef Full Text | Google Scholar De Vos, M., Gandras, K., and Debener, S. (2014). Towards a truly mobile auditory brain–computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91, 46–53. doi: 10.1016/j.ijpsycho.2013.08.010 PubMed Abstract | CrossRef Full Text | Google Scholar Farwell, L. A., and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523. doi: 10.1016/0013-4694(88)90149-6 PubMed Abstract | CrossRef Full Text | Google Scholar Griss, P., Enoksson, P., Tolvanen-Laakso, H. K., Merilainen, P., Ollmar, S., and Stemme, G. (2001). Micromachined electrodes for biopotential measurements. J. Microelectromech. Syst. 10, 10–16. doi: 10.1109/84.911086 CrossRef Full Text | Google Scholar Grozea, C., Voinescu, C. D., and Fazli, S. (2011). Bristle-sensors–low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 8:025008. doi: 10.1088/1741-2560/8/2/025008 PubMed Abstract | CrossRef Full Text | Google Scholar Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., et al. (2009). How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 462, 94–98. doi: 10.1016/j.neulet.2009.06.045 PubMed Abstract | CrossRef Full Text | Google Scholar Guger, C., Krausz, G., Allison, B. Z., and Edlinger, G. (2012). Comparison of dry and gel based electrodes for P300 brain–computer interfaces. Front. Neurosci. 6:60. doi: 10.3389/fnins.2012.00060 PubMed Abstract | CrossRef Full Text | Google Scholar Halder, S., Käthner, I., and Kübler, A. (2016). Training leads to increased auditory brain–computer interface performance of end-users with motor impairments. Clin. Neurophysiol. 127, 1288–1296. doi: 10.1016/j.clinph.2015.08.007 PubMed Abstract | CrossRef Full Text | Google Scholar Halder, S., Pinegger, A., Käthner, I., Wriessnegger, S. C., Faller, J., Pires Antunes, J. B., et al. (2015). Brain-controlled applications using dynamic P300 speller matrices. Artif. Intell. Med. 63, 7–17. doi: 10.1016/j.artmed.2014.12.001 PubMed Abstract | CrossRef Full Text | Google Scholar Hart, S. G., and Staveland, L. E. (1988). “Development of NASA-TLX (Task Load Index): results of empirical and theoretical research,” in Advances in Psychology, Vol. 52. eds P. A. Hancock. and N. Meshkati (North-Holland), 139–183. Available online at: http://www.sciencedirect.com/science/article/pii/S0166411508623869 Google Scholar Herweg, A., Gutzeit, J., Kleih, S., and Kübler, A. (2016). Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol. Psychol. 121(Pt A), 117–124. doi: 10.1016/j.biopsycho.2016.10.006 PubMed Abstract | CrossRef Full Text | Google Scholar Hill, N. J., Ricci, E., Haider, S., McCane, L. M., Heckman, S., Wolpaw, J. R., et al. (2014). A practical, intuitive brain–computer interface for communicating “yes” or “no” by listening. J. Neural Eng. 11:035003. doi: 10.1088/1741-2560/11/3/035003 PubMed Abstract | CrossRef Full Text | Google Scholar Hintermüller, C., Vargiu, E., Halder, S., Daly, J., Miralles, F., and Lowish, H. (2015) “Brain neural computer interface for everyday home usage,” in Universal Access in Human-Computer Interaction. Access to Interaction. UAHCI Toronto, Canada, 2015. Vol. 9176, Lecture Notes in Computer Science, eds M. Antona C. Stephanidis (Cham: Springer). doi: 10.1007/978-3-319-20681-3_41. CrossRef Full Text | Google Scholar Höhne, J., Schreuder, M., Blankertz, B., and Tangermann, M. (2011). A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front. Neurosci. 5:99. doi: 10.3389/fnins.2011.00099 PubMed Abstract | CrossRef Full Text | Google Scholar Holz, E. M., Botrel, L., Kaufmann, T., and Kübler, A. (2015a). Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch. Phys. Med. Rehabil. 96(3 Suppl.), S16–S26. doi: 10.1016/j.apmr.2014.03.035 PubMed Abstract | CrossRef Full Text | Google Scholar Holz, E. M., Botrel, L., and Kübler, A. (2015b). Independent home use of Brain Painting improves quality of life of two artists in the locked-in state diagnosed with amyotrophic lateral sclerosis. Brain Comput. Interf. 2, 117–134. doi: 10.1080/2326263X.2015.1100048 CrossRef Full Text | Google Scholar Huggins, J. E., Moinuddin, A. A., Chiodo, A. E., and Wren, P. A. (2015). What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch. Phys. Med. Rehabil. 96(3 Suppl.), S38–S45.e5. doi: 10.1016/j.apmr.2014.05.028 PubMed Abstract | CrossRef Full Text | Google Scholar Huggins, J. E., Wren, P. A., and Gruis, K. L. (2011). What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 318–324. doi: 10.3109/17482968.2011.572978 PubMed Abstract | CrossRef Full Text | Google Scholar ISO 9241–210. (2008). Ergonomics of Human System Interaction - Part 210: Human-Centred Design for Interactive Systems (Formerly Known As 13407). Geneva: International Organization for Standardization (ISO) Switzerland. Käthner, I., Daly, J., Halder, S., Räderscheidt, J., Armstrong, E., Dauwalder, S., et al. (2014). “A P300 BCI for e-inclusion, cognitive rehabilitation and smart home control,” in Proceedings of the 6th International BCI Conference Graz 2014, eds G. R. Müller-Putz, G. Bauernfeind, C. Brunner, D. Steyrl, S. Wriessnegger, and R. Scherer (Graz: Graz University of Technology Publishing House), 60–63. doi: 10.3217/978-3-85125-378-8-15 CrossRef Full Text | Google Scholar Käthner, I., Kübler, A., and Halder, S. (2015a). Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state. J. Neuroeng. Rehabil. 12:76. doi: 10.1186/s12984-015-0071-z PubMed Abstract | CrossRef Full Text | Google Scholar Käthner, I., Kübler, A., and Halder, S. (2015b). Rapid P300 brain-computer interface communication with a head-mounted display. Neuroprosthetics 9:207. doi: 10.3389/fnins.2015.00207 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Hammer, E. M., and Kübler, A. (2011a). “ERPs contributing to classification in the “P300” BCI,” in Procedings of the Fifth International BCI Conference (Graz: Verlag der Technischen Universität Graz), 136–139. Google Scholar Kaufmann, T., Holz, E. M., and Kübler, A. (2013a). Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front. Neurosci. 7:129. doi: 10.3389/fnins.2013.00129 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Schulz, S. M., Grünzinger, C., and Kübler, A. (2011b). Flashing characters with famous faces improves ERP-based brain-computer interface performance. J. Neural Eng. 8:056016. doi: 10.1088/1741-2560/8/5/056016 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Schulz, S. M., Köblitz, A., Renner, G., Wessig, C., and Kübler, A. (2013b). Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clin. Neurophysiol. 124, 893–900. doi: 10.1016/j.clinph.2012.11.006 PubMed Abstract | CrossRef Full Text | Google Scholar Kaufmann, T., Völker, S., Gunesch, L., and Kübler, A. (2012). Spelling is just a click away – a user-centered brain-computer interface including auto-calibration and predictive text entry. Front. Neurosci. 6:72. doi: 10.3389/fnins.2012.00072 PubMed Abstract | CrossRef Full Text | Google Scholar Kleih, S. C., Herweg, A., Kaufmann, T., Staiger-Sälzer, P., Gerstner, N., and Kübler, A. (2015). The WIN-speller: a new intuitive auditory brain-computer interface spelling application. Front. Neurosci. 9:346. doi: 10.3389/fnins.2015.00346 PubMed Abstract | CrossRef Full Text | Google Scholar Kleih, S. C., Kaufmann, T., Zickler, C., Halder, S., Leotta, F., Cincotti, F., et al. (2011). Out of the frying pan into the fire–the P300-based BCI faces real-world challenges. Progr. Brain Res. 194, 27–46. doi: 10.1016/B978-0-444-53815-4.00019-4 CrossRef Full Text | Google Scholar Kübler, A., and Birbaumer, N. (2008). Brain–computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119, 2658–2666. doi: 10.1016/j.clinph.2008.06.019 PubMed Abstract | CrossRef Full Text | Google Scholar Kübler, A., Holz, E. M., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S. C., et al. (2014). The user-centered design as novel perspective for evaluating the usability of bci-controlled applications. PLoS ONE 9:e112392. doi: 10.1371/journal.pone.0112392 PubMed Abstract | CrossRef Full Text | Google Scholar Kübler, A., Mattia, D., Rupp, R., and Tangermann, M. (2013). Facing the challenge: bringing brain–computer interfaces to end-users. Artif. Intell. Med. 59, 55–60. doi: 10.1016/j.artmed.2013.08.002 PubMed Abstract | CrossRef Full Text | Google Scholar Lenhardt, A., Kaper, M., and Ritter, H. J. (2008). An adaptive P300-based online brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 121–130. doi: 10.1109/TNSRE.2007.912816 PubMed Abstract | CrossRef Full Text | Google Scholar Liao, L.-D., Chen, C.-Y., Wang, I.-J., Chen, S.-F., Li, S.-Y., Chen, B.-W., et al. (2012a). Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. Neuroeng. Rehabil. 9:5. doi: 10.1186/1743-0003-9-5 PubMed Abstract | CrossRef Full Text | Google Scholar Liao, L. D., Lin, C. T., McDowell, K., Wickenden, A. E., Gramann, K., Jung, T. P., et al. (2012b). Biosensor technologies for augmented brain–computer interfaces in the next decades. Proc. IEEE 100, 1553–1566. doi: 10.1109/JPROC.2012.2184829 CrossRef Full Text | Google Scholar Liao, L.-D., Wang, I.-J., Chen, S.-F., Chang, J.-Y., and Lin, C.-T. (2011). Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 11, 5819–5834. doi: 10.3390/s110605819 PubMed Abstract | CrossRef Full Text | Google Scholar Lin, C.-T., Liao, L.-D., Liu, Y.-H., Wang, I.-J., Lin, B.-S., and Chang, J.-Y. (2011). Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 58, 1200–1207. doi: 10.1109/TBME.2010.2102353 PubMed Abstract | CrossRef Full Text | Google Scholar Lo, C.-C., Chien, T.-Y., Chen, Y.-C., Tsai, S.-H., Fang, W.-C., and Lin, B.-S. (2016). A wearable channel selection-based brain-computer interface for motor imagery detection. Sensors 16:213. doi: 10.3390/s16020213 PubMed Abstract | CrossRef Full Text | Google Scholar Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M., Rosenkranz, K., et al. (2012). The in-the-ear recording concept: user-centered and wearable brain monitoring. IEEE Pulse 3, 32–42. doi: 10.1109/MPUL.2012.2216717 PubMed Abstract | CrossRef Full Text | Google Scholar Looney, D., Park, C., Kidmose, P., Rank, M. L., Ungstrup, M., Rosenkranz, K., et al. (2011). “An in-the-ear platform for recording electroencephalogram,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, (Boston, MA), 6882–6885. doi: 10.1109/IEMBS.2011.6091733 CrossRef Full Text | Google Scholar Lopez-Gordo, M. A., Sanchez-Morillo, D., and Valle, F. P. (2014). Dry EEG electrodes. Sensors 14, 12847–12870. doi: 10.3390/s140712847 PubMed Abstract | CrossRef Full Text | Google Scholar Mak, J. N., Arbel, Y., Minett, J. W., McCane, L. M., Yuksel, B., Ryan, D., et al. (2011). Optimizing the P300-based brain–computer interface: current status, limitations and future directions. J. Neural Eng. 8:025003. doi: 10.1088/1741-2560/8/2/025003 PubMed Abstract | CrossRef Full Text | Google Scholar McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., Sellers, E. W., et al. (2015). P300-based brain-computer interface (BCI) event-related potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin. Neurophysiol. 126, 2124–2131. doi: 10.1016/j.clinph.2015.01.013 PubMed Abstract | CrossRef Full Text | Google Scholar Millán, J. D. R., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliemma, C., Tangermann, M., et al. (2010). Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161. doi: 10.3389/fnins.2010.00161 PubMed Abstract | CrossRef Full Text | Google Scholar Miralles, F., Vargiu, E., Dauwalder, S., Sola, M., Müller-Putz, G. R., Wriessnegger, S. C., et al. (2015a). Brain computer interface on track to home. Sci. World J. 2015:e623896. doi: 10.1155/2015/623896 PubMed Abstract | CrossRef Full Text | Google Scholar Miralles, F., Vargiu, E., Rafael-Palou, X., Solà, M., Dauwalder, S., Guger, C., et al. (2015b). Brain–computer interfaces on track to home: results of the evaluation at disabled end-users' homes and lessons learnt. Front. ICT 2:25 doi: 10.3389/fict.2015.00025 CrossRef Full Text | Google Scholar Münßinger, J. I., Halder, S., Kleih, S. C., Furdea, A., Raco, V., Hösle, A., et al. (2010). Brain Painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front. Neurosci. 4:182. doi: 10.3389/fnins.2010.00182 PubMed Abstract | CrossRef Full Text | Google Scholar Nam, C. S., Jeon, Y., Li, Y., Kim, Y.-J., and Yoon, H. (2009). Usability of the P300 Speller: towards a more sustainable brain–computer interface. eMinds: Int. J. Hum. Comput. Interact. 1, 111–125. Google Scholar Nathan, V., and Jafari, R. (2014). “Characterizing contact impedance, signal quality and robustness as a function of the cardinality and arrangement of fingers on dry contact EEG electrodes,” in Conference Proceedings:…Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014 (Chicago), 3755–3758. doi: 10.1109/EMBC.2014.6944440 CrossRef Full Text | Google Scholar Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., et al. (2008). A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119, 1909–1916. doi: 10.1016/j.clinph.2008.03.034 PubMed Abstract | CrossRef Full Text | Google Scholar Pfurtscheller, G., Allison, B. Z., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., et al. (2010). The hybrid BCI. Neuroprosthetics 4:30. doi: 10.3389/fnpro.2010.00003 PubMed Abstract | CrossRef Full Text | Google Scholar Pinegger, A., Faller, J., Halder, S., Wriessnegger, S. C., and Müller-Putz, G. R. (2015). Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach. J. Neural Eng. 12:014001. doi: 10.1088/1741-2560/12/1/014001 PubMed Abstract | CrossRef Full Text | Google Scholar Pinegger, A., Wriessnegger, S. C., Faller, J., and Müller-Putz, G. R. (2016). Evaluation of different EEG acquisition systems concerning their suitability for building a brain–computer interface: case studies. Front. Neurosci. 10:441. doi: 10.3389/fnins.2016.00441 PubMed Abstract | CrossRef Full Text | Google Scholar Riccio, A., Holz, E. M., Aricò, P., Leotta, F., Aloise, F., Desideri, L., et al. (2015). Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Arch. Phys. Med. Rehabil. 96, S54–S61. doi: 10.1016/j.apmr.2014.05.029 PubMed Abstract | CrossRef Full Text | Google Scholar Riccio, A., Mattia, D., Simione, L., Olivetti, M., and Cincotti, F. (2012). Eye-gaze independent EEG-based brain-computer interfaces for communication. J. Neural Eng. 9:045001. doi: 10.1088/1741-2560/9/4/045001 PubMed Abstract | CrossRef Full Text | Google Scholar Schreuder, M., Höhne, J., Blankertz, B., Haufe, S., Dickhaus, T., and Tangermann, M. (2013). Optimizing event-related potential based brain–computer interfaces: a systematic evaluation of dynamic stopping methods. J. Neural Eng. 10:036025. doi: 10.1088/1741-2560/10/3/036025 PubMed Abstract | CrossRef Full Text | Google Scholar Schreuder, M., Rost, T., and Tangermann, M. (2011). Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI. Front. Neurosci. 5:112. doi: 10.3389/fnins.2011.00112 PubMed Abstract | CrossRef Full Text | Google Scholar Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R. (2006). A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 73, 242–252. doi: 10.1016/j.biopsycho.2006.04.007 PubMed Abstract | CrossRef Full Text | Google Scholar Sellers, E. W., Vaughan, T. M., and Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. Amyotroph. Lateral Scler. 11, 449–455. doi: 10.3109/17482961003777470 PubMed Abstract | CrossRef Full Text | Google Scholar Simon, N., Käthner, I., Ruf, C. A., Pasqualotto, E., Kübler, A., and Halder, S. (2015). An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user. Front. Hum. Neurosci. 8:1039. doi: 10.3389/fnhum.2014.01039 PubMed Abstract | CrossRef Full Text | Google Scholar Toyama, S. P., Takano, K. P., and Kansaku, K. M. (2012). A non-adhesive solid-gel electrode for a non-invasive brain–machine interface. Neuroprosthetics 3:114. doi: 10.3389/fneur.2012.00114 PubMed Abstract | CrossRef Full Text | Google Scholar Vargiu, E., Daly, J., Dauwalder, S., Armstrong, E., Martin, S., and Miralles, F. (2014). “Cognitive rehabilitation through BNCI: serious games in BackHome,” in Proceedings of the 6th International BCI Conference Graz 2014, eds G. R. Müller-Putz, G. Bauernfeind, C. Brunner, D. Steyrl, S. Wriessnegger, and R. Scherer (Graz: Graz University of Technology Publishing House), 33–36. doi: 10.3217/978-3-85125-378-8-9 CrossRef Full Text | Google Scholar Wills, S. A., and MacKay, D. J. C. (2006). “DASHER–an efficient writing system for brain-computer interfaces?” IEEE Trans. Neural Syst. Rehabil. Eng 14, 244–246. doi: 10.1109/TNSRE.2006.875573 PubMed Abstract | CrossRef Full Text | Google Scholar Yu, T., Li, Y., Long, J., and Gu, Z. (2012). Surfing the internet with a BCI mouse. J. Neural Eng. 9:036012. doi: 10.1088/1741-2560/9/3/036012 PubMed Abstract | CrossRef Full Text | Google Scholar Yu, Y. H., Lu, S. W., Liao, L. D., and Lin, C. T. (2014). Design, fabrication, and experimental validation of novel flexible silicon-based dry sensors for electroencephalography signal measurements. IEEE J. Transl. Eng. Health Med. 2, 1–7. doi: 10.1109/JTEHM.2014.2367518 PubMed Abstract | CrossRef Full Text | Google Scholar Zander, T. O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., et al. (2011). A dry EEG-system for scientific research and brain–computer interfaces. Neuroprosthetics 5:53. doi: 10.3389/fnins.2011.00053 PubMed Abstract | CrossRef Full Text | Google Scholar Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., et al. (2011). A Brain-computer interface as input channel for a standard assistive technology software. Clin. EEG Neurosc. 42, 236–244. doi: 10.1177/155005941104200409 PubMed Abstract | CrossRef Full Text | Google Scholar

PY - 2017/5/22

Y1 - 2017/5/22

N2 - Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.

AB - Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.

KW - Brain-computer interface

KW - EEG

KW - practical electrodes

KW - assistive technology

KW - end user evaluation

U2 - 10.3389/fnins.2017.00286

DO - 10.3389/fnins.2017.00286

M3 - Article

VL - 11

SP - 286

JO - Frontiers in Neuroscience

T2 - Frontiers in Neuroscience

JF - Frontiers in Neuroscience

SN - 1662-4548

ER -