A Monte Carlo examination of an MTMM model with planned incomplete data structures

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

The classic approach for partitioning and assessing reliability and validity has been through the use of the multitrait-multimethod (MTMM) model. The MTMM approach generally involves 3 different groups (method) evaluating 3 traits. This approach can be reconceptualized for questionnaire evaluation, so that the method becomes 3 different scaling types, which are administered to the same respondents on different occasions to avoid carryover effects. A serious limitation of this MTMM model is that data are required from respondents on at least 3 different occasions, thus placing a heavy burden on the researcher and respondents. Planned incomplete data designs for the purpose of substantially reducing the amount of data required for MTMM models were investigated: 1st, a design that reduces the amount of data collected at the 3rd administration by 22%; and 2nd, a design in which data need only be collected at 2 occasions. The performance of Listwise Deletion, Pairwise Deletion, and the expectation maximization (EM) algorithm at dealing with planned incomplete data are examined through a series of simulations. Results indicate that EM was generally precise and efficient.
LanguageEnglish
Pages369-389
JournalStructural Equation Modeling: A Multidisciplinary Journal
Volume9
Issue number3
Publication statusPublished - 2002

Fingerprint

partitioning
simulation
method
evaluation
need
effect

Cite this

@article{fcd3e49d72dc4d3fb206918bf6b24eac,
title = "A Monte Carlo examination of an MTMM model with planned incomplete data structures",
abstract = "The classic approach for partitioning and assessing reliability and validity has been through the use of the multitrait-multimethod (MTMM) model. The MTMM approach generally involves 3 different groups (method) evaluating 3 traits. This approach can be reconceptualized for questionnaire evaluation, so that the method becomes 3 different scaling types, which are administered to the same respondents on different occasions to avoid carryover effects. A serious limitation of this MTMM model is that data are required from respondents on at least 3 different occasions, thus placing a heavy burden on the researcher and respondents. Planned incomplete data designs for the purpose of substantially reducing the amount of data required for MTMM models were investigated: 1st, a design that reduces the amount of data collected at the 3rd administration by 22{\%}; and 2nd, a design in which data need only be collected at 2 occasions. The performance of Listwise Deletion, Pairwise Deletion, and the expectation maximization (EM) algorithm at dealing with planned incomplete data are examined through a series of simulations. Results indicate that EM was generally precise and efficient.",
author = "Brendan Bunting and Gary Adamson and PK Mulhall",
year = "2002",
language = "English",
volume = "9",
pages = "369--389",
journal = "Structural Equation Modeling: A Multidisciplinary Journal",
issn = "1070-5511",
number = "3",

}

TY - JOUR

T1 - A Monte Carlo examination of an MTMM model with planned incomplete data structures

AU - Bunting, Brendan

AU - Adamson, Gary

AU - Mulhall, PK

PY - 2002

Y1 - 2002

N2 - The classic approach for partitioning and assessing reliability and validity has been through the use of the multitrait-multimethod (MTMM) model. The MTMM approach generally involves 3 different groups (method) evaluating 3 traits. This approach can be reconceptualized for questionnaire evaluation, so that the method becomes 3 different scaling types, which are administered to the same respondents on different occasions to avoid carryover effects. A serious limitation of this MTMM model is that data are required from respondents on at least 3 different occasions, thus placing a heavy burden on the researcher and respondents. Planned incomplete data designs for the purpose of substantially reducing the amount of data required for MTMM models were investigated: 1st, a design that reduces the amount of data collected at the 3rd administration by 22%; and 2nd, a design in which data need only be collected at 2 occasions. The performance of Listwise Deletion, Pairwise Deletion, and the expectation maximization (EM) algorithm at dealing with planned incomplete data are examined through a series of simulations. Results indicate that EM was generally precise and efficient.

AB - The classic approach for partitioning and assessing reliability and validity has been through the use of the multitrait-multimethod (MTMM) model. The MTMM approach generally involves 3 different groups (method) evaluating 3 traits. This approach can be reconceptualized for questionnaire evaluation, so that the method becomes 3 different scaling types, which are administered to the same respondents on different occasions to avoid carryover effects. A serious limitation of this MTMM model is that data are required from respondents on at least 3 different occasions, thus placing a heavy burden on the researcher and respondents. Planned incomplete data designs for the purpose of substantially reducing the amount of data required for MTMM models were investigated: 1st, a design that reduces the amount of data collected at the 3rd administration by 22%; and 2nd, a design in which data need only be collected at 2 occasions. The performance of Listwise Deletion, Pairwise Deletion, and the expectation maximization (EM) algorithm at dealing with planned incomplete data are examined through a series of simulations. Results indicate that EM was generally precise and efficient.

M3 - Article

VL - 9

SP - 369

EP - 389

JO - Structural Equation Modeling: A Multidisciplinary Journal

T2 - Structural Equation Modeling: A Multidisciplinary Journal

JF - Structural Equation Modeling: A Multidisciplinary Journal

SN - 1070-5511

IS - 3

ER -