A Machine Learning-Assisted Numerical Predictor for Compressive Strength of Geopolymer Concrete Based on Experimental Data and Sensitivity Analysis

An Huynh, Quang Dang Nguyen , Qui Lieu Xuan , Bryan Magee, TaeChoong Chung , Kiet Tuan Tran, Khoa Tan Nguyen

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)
107 Downloads (Pure)

Abstract

Geopolymer concrete offers a favourable alternative to conventional Portland concrete due to its reduced embodied carbon dioxide (CO2) content. Engineering properties of geopolymer concrete, such as compressive strength, are commonly characterised based on experimental practices requiring large volumes of raw materials, time for sample preparation, and costly equipment. To help address this inefficiency, this study proposes machine learning-assisted numerical methods to predict compressive strength of fly ash-based geopolymer (FAGP) concrete. Methods assessed included artificial neural network (ANN), deep neural network (DNN), and deep residual network (ResNet), based on experimentally collected data. Performance of the proposed approaches were evaluated using various statistical measures including R-squared (R 2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Sensitivity analysis was carried out to identify effects of the following six input variables on the compressive strength of FAGP concrete: sodium hydroxide/sodium silicate ratio, fly ash/aggregate ratio, alkali activator/fly ash ratio, concentration of sodium hydroxide, curing time, and temperature. Fly ash/aggregate ratio was found to significantly affect compressive strength of FAGP concrete. Results obtained indicate that the proposed approaches offer reliable methods for FAGP design and optimisation. Of note was ResNet, which demonstrated the highest R 2 and lowest RMSE and MAPE values.

Original languageEnglish
Article number7726
Pages (from-to)1-16
Number of pages16
JournalApplied Sciences
Volume10
Issue number21
Early online date31 Oct 2020
DOIs
Publication statusPublished (in print/issue) - 1 Nov 2020

Bibliographical note

Funding Information:
Funding: This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1F1A1050014).

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • Artificial neural network
  • Compressive strength
  • Deep neural network
  • Fly ash
  • Geopolymer concrete
  • Machine learning
  • ResNet

Fingerprint

Dive into the research topics of 'A Machine Learning-Assisted Numerical Predictor for Compressive Strength of Geopolymer Concrete Based on Experimental Data and Sensitivity Analysis'. Together they form a unique fingerprint.

Cite this