Abstract
Geopolymer concrete offers a favourable alternative to conventional Portland concrete due to its reduced embodied carbon dioxide (CO2) content. Engineering properties of geopolymer concrete, such as compressive strength, are commonly characterised based on experimental practices requiring large volumes of raw materials, time for sample preparation, and costly equipment. To help address this inefficiency, this study proposes machine learning-assisted numerical methods to predict compressive strength of fly ash-based geopolymer (FAGP) concrete. Methods assessed included artificial neural network (ANN), deep neural network (DNN), and deep residual network (ResNet), based on experimentally collected data. Performance of the proposed approaches were evaluated using various statistical measures including R-squared (R 2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Sensitivity analysis was carried out to identify effects of the following six input variables on the compressive strength of FAGP concrete: sodium hydroxide/sodium silicate ratio, fly ash/aggregate ratio, alkali activator/fly ash ratio, concentration of sodium hydroxide, curing time, and temperature. Fly ash/aggregate ratio was found to significantly affect compressive strength of FAGP concrete. Results obtained indicate that the proposed approaches offer reliable methods for FAGP design and optimisation. Of note was ResNet, which demonstrated the highest R 2 and lowest RMSE and MAPE values.
Original language | English |
---|---|
Article number | 7726 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Applied Sciences |
Volume | 10 |
Issue number | 21 |
Early online date | 31 Oct 2020 |
DOIs | |
Publication status | Published (in print/issue) - 1 Nov 2020 |
Bibliographical note
Funding Information:Funding: This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1F1A1050014).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
Keywords
- Artificial neural network
- Compressive strength
- Deep neural network
- Fly ash
- Geopolymer concrete
- Machine learning
- ResNet
Fingerprint
Dive into the research topics of 'A Machine Learning-Assisted Numerical Predictor for Compressive Strength of Geopolymer Concrete Based on Experimental Data and Sensitivity Analysis'. Together they form a unique fingerprint.Student theses
-
Development of innovative semi‐flexible composite materials for pavement applications
Huynh, A. (Author), Magee, B. (Supervisor) & Woodward, D. (Supervisor), Feb 2021Student thesis: Doctoral Thesis
File