A hierarchical physical model-based approach to predictive control of a thermal power plant for efficient plant-wide disturbance rejection

G Prasad, GW Irwin, E Swidenbank, BW Hogg

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523–37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-�red power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat �ow on the boiler-side, while condenser vacuumwas �uctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period.
LanguageEnglish
Pages107-128
JournalTransactions of the Institute of Measurement and Control
Volume24
Issue number2
Publication statusPublished - Jul 2002

Fingerprint

Disturbance rejection
Power plants
Governors
Controllers
Boilers
Level control
Heat radiation
Control theory
Turbines
Sampling
Hot Temperature

Cite this

@article{16c2a74695b248f2882eac3b3994f8bb,
title = "A hierarchical physical model-based approach to predictive control of a thermal power plant for efficient plant-wide disturbance rejection",
abstract = "Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523–37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-�red power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat �ow on the boiler-side, while condenser vacuumwas �uctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period.",
author = "G Prasad and GW Irwin and E Swidenbank and BW Hogg",
year = "2002",
month = "7",
language = "English",
volume = "24",
pages = "107--128",
journal = "Transactions of the Institute of Measurement and Control",
issn = "0142-3312",
number = "2",

}

TY - JOUR

T1 - A hierarchical physical model-based approach to predictive control of a thermal power plant for efficient plant-wide disturbance rejection

AU - Prasad, G

AU - Irwin, GW

AU - Swidenbank, E

AU - Hogg, BW

PY - 2002/7

Y1 - 2002/7

N2 - Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523–37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-�red power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat �ow on the boiler-side, while condenser vacuumwas �uctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period.

AB - Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523–37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-�red power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat �ow on the boiler-side, while condenser vacuumwas �uctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period.

M3 - Article

VL - 24

SP - 107

EP - 128

JO - Transactions of the Institute of Measurement and Control

T2 - Transactions of the Institute of Measurement and Control

JF - Transactions of the Institute of Measurement and Control

SN - 0142-3312

IS - 2

ER -