3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming

R. Beveridge, Shane Wilson, Damien Coyle

Research output: Chapter in Book/Report/Conference proceedingChapter

7 Citations (Scopus)

Abstract

A Brain-Computer Interface (BCI) offers movement-free control of a computer application and isachieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset Visual Evoked Potentials (mVEP) are neural potentials employed in BCIs and occur when motion related stimuli are attended to visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilising the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexityand style, in-game distractions and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilising contemporary presentation modalities inneurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the Oculus Rift virtual reality headset. Results from thirtyone independent subjects were analysed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance, thus demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.
Original languageEnglish
Title of host publicationBrain-Computer Interfaces: Lab Experiments to Real-World Applications
PublisherElsevier
Pages329-353
Volume228
ISBN (Print)978-0-12-804216-8
DOIs
Publication statusPublished - 31 Aug 2016

Keywords

  • Brain-Computer Interface (BCI)
  • Motion-onset
  • visually evoked potentials (mVEP)
  • Electroencephalography
  • (EEG)
  • Video Gaming
  • 3-Dimensional (3D)
  • Graphics
  • Liquid
  • Crystal Display (LCD)
  • Oculus Rift (OCR)
  • Virtual Reality
  • (VR).

Fingerprint Dive into the research topics of '3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming'. Together they form a unique fingerprint.

  • Cite this

    Beveridge, R., Wilson, S., & Coyle, D. (2016). 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming. In Brain-Computer Interfaces: Lab Experiments to Real-World Applications (Vol. 228, pp. 329-353). Elsevier. https://doi.org/10.1016/bs.pbr.2016.06.006